SHORT-TERM OUTCOMES OF VERY LOW BIRTH WEIGHT INFANTS IN RIGA MATERNITY HOSPITAL

Authors

  • Sabine Kovale Rigas Stradins University
  • Beate Vasioleka Riga Stradins University
  • Anete Sperberga Riga Stradins University
  • Elizabete Marta Zaharane Riga Stradins University
  • Evija Laizane Riga Stradins University
  • Polina Galica Riga Stradins University
  • Kristine Rasnaca <p>Riga Stradins University, Riga Maternity Hospital</p> Children’s Clinical University Hospital
  • Juris Sleiers Riga Maternity Hospital

DOI:

https://doi.org/10.17770/sie2023vol2.7076

Keywords:

morbidity, short-term outcome, very low birth weight

Abstract

As the preterm birth rate is increasing in most countries, the number of very low birth weight infants (VLBW - birth weight less than 1500 grams) is also growing. VLBW infants are at a high risk of morbidity and mortality, but the adverse outcomes have been decreasing over the last few years due to improvements in the quality of care. The main objective of this research is to determine the risk factors of early neonatal morbidity, rate of survival, frequency of disease and complications in VLBW infants as well as to compare the differences between the years. The data was collected from the Riga Maternity hospital’s medical records over a five-year period from 2015 to 2019. A total of 209 VLBW were admitted to the Riga Maternity hospital’s intensive care unit, of whom 192 (92.3%) survived to discharge. Over the five years the number of VLBW infants increased almost by half, while the mortality rate fluctuated between the years. Respiratory distress syndrome and sepsis were the two main complications for the infants. More than half (62.5%) of non-survivors died within the first 24 hours after birth with respiratory failure being the leading cause. Survival rate was strongly associated with gestational age and birth weight.

References

Abolfotouh, M. A., Al Saif, S., Altwaijri, W. A., & Al Rowaily, M. A. (2018). Prospective study of early and late outcomes of extremely low birthweight in Central Saudi Arabia. BMC pediatrics, 18(1), 280. DOI: https://doi.org/10.1186/s12887-018-1248-y

Abdel-Hady, H., Nasef, N., Shabaan, A. E., & Nour, I. (2015). Caffeine therapy in preterm infants. World journal of clinical pediatrics, 4(4), 81–93. DOI: https://doi.org/10.5409/wjcp.v4.i4.81

Afjeh, S. A., Sabzehei, M. K., Fallahi, M., & Esmaili, F. (2013). Outcome of very low birth weight infants over 3 years report from an Iranian center. Iranian journal of pediatrics, 23(5), 579–587.

Al Hazzani, F., Al-Alaiyan, S., Hassanein, J., & Khadawardi, E. (2011). Short-term outcome of very low-birth-weight infants in a tertiary care hospital in Saudi Arabia. Annals of Saudi medicine, 31(6), 581–585. DOI: https://doi.org/10.4103/0256-4947.87093

AlQurashi, M. A. (2020). Impact of Mode of Delivery on the Survival Rate of Very Low Birth Weight Infants: A Single-Center Experience. Cureus, 12(12), e11918. DOI: https://doi.org/10.7759/cureus.11918

Amaral, L. M., Wallace, K., Owens, M., & LaMarca, B. (2017). Pathophysiology and Current Clinical Management of Preeclampsia. Current hypertension reports, 19(8), 61. DOI: https://doi.org/10.1007/s11906-017-0757-7

Bachnas, M. A., Akbar, M. I. A., Dachlan, E. G., & Dekker, G. (2021). The role of magnesium sulfate (MgSO4) in fetal neuroprotection. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians, 34(6), 966–978. DOI: https://doi.org/10.1080/14767058.2019.1619688

Centers for Disease Control and Prevention. (2022) Preterm birth. Retrieved from: https://www.cdc.gov/reproductivehealth/maternalinfanthealth/pretermbirth.htm#:~:text=Preterm%20birth%20is%20when%20a,2020%20to%2010.5%25%20in%202021

Chawla, S., Wyckoff, M. H., Rysavy, M. A., Patel, R. M., Chowdhury, D., Natarajan, G., Laptook, A. R., Lakshminrusimha, S., Bell, E. F., Shankaran, S., Van Meurs, K. P., Ambalavanan, N., Greenberg, R. G., Younge, N., Werner, E. F., Das, A., Carlo, W. A., & Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network (2022). Association of Antenatal Steroid Exposure at 21 to 22 Weeks of Gestation with Neonatal Survival and Survival Without Morbidities. JAMA network open, 5(9), e2233331. DOI: https://doi.org/10.1001/jamanetworkopen.2022.33331

Chollat, C., & Marret, S. (2018). Magnesium sulfate and fetal neuroprotection: overview of clinical evidence. Neural regeneration research, 13(12), 2044–2049. DOI: https://doi.org/10.4103/1673-5374.241441

Coshal, H., Mukerji, A., Lemyre, B., Ng, E. H., Alvaro, R., Ethier, G., Yoon, E. W., Beltempo, M., & Shah, P. S. (2021). Characteristics and outcomes of preterm neonates according to number of doses of surfactant received. Journal of perinatology: official journal of the California Perinatal Association, 41(1), 39–46. DOI: https://doi.org/10.1038/s41372-020-00779-9

Cunningham, M. W., Jr, & LaMarca, B. (2018). Risk of cardiovascular disease, end-stage renal disease, and stroke in postpartum women and their fetuses after a hypertensive pregnancy. American journal of physiology. Regulatory, integrative and comparative physiology, 315(3), R521–R528. DOI: https://doi.org/10.1152/ajpregu.00218.2017

Dobson, N. R., & Hunt, C. E. (2018). Caffeine: an evidence-based success story in VLBW pharmacotherapy. Pediatric research, 84(3), 333–340. DOI: https://doi.org/10.1038/s41390-018-0089-6

Dumpa, V., & Bhandari, V. (2018). Surfactant, steroids and non-invasive ventilation in the prevention of BPD. Seminars in perinatology, 42(7), 444–452. DOI: https://doi.org/10.1053/j.semperi.2018.09.006

Gao, R., Liu, B., Yang, W., Wu, Y., Wang, B., Santillan, M. K., Ryckman, K., Santillan, D. A., & Bao, W. (2021). Association of Maternal Sexually Transmitted Infections with Risk of Preterm Birth in the United States. JAMA network open, 4(11), e2133413. DOI: https://doi.org/10.1001/jamanetworkopen.2021.33413

Goldenberg, R. L., Culhane, J. F., Iams, J. D., & Romero, R. (2008). Epidemiology and causes of preterm birth. Lancet (London, England), 371(9606), 75–84. DOI: https://doi.org/10.1016/S0140-6736(08)60074-4

Günther, V., Alkatout, I., Vollmer, C., Maass, N., Strauss, A., & Voigt, M. (2021). Impact of nicotine and maternal BMI on fetal birth weight. BMC pregnancy and childbirth, 21(1), 127. DOI: https://doi.org/10.1186/s12884-021-03593-z

Jain, K., Sankar, M. J., Nangia, S., Ballambattu, V. B., Sundaram, V., Ramji, S., Plakkal, N., Kumar, P., Jain, A., Sivanandan, S., Vishnubhatla, S., Chellani, H., Deorari, A., Paul, V. K., & Agarwal, R. (2019). Causes of death in preterm neonates (<33 weeks) born in tertiary care hospitals in India: analysis of three large prospective multicentric cohorts. Journal of perinatology: official journal of the California Perinatal Association, 39(Suppl 1), 13–19. DOI: https://doi.org/10.1038/s41372-019-0471-1

Jefferies, A. L., & Canadian Paediatric Society, Fetus and Newborn Committee (2012). Kangaroo care for the preterm infant and family. Paediatrics & child health, 17(3), 141–146. DOI: https://doi.org/10.1093/pch/17.3.141

Jeschke, E., Biermann, A., Günster, C., Böhler, T., Heller, G., Hummler, H. D., Bührer, C., & Routine Data-Based Quality Improvement Panel (2016). Mortality and Major Morbidity of Very-Low-Birth-Weight Infants in Germany 2008-2012: A Report Based on Administrative Data. Frontiers in pediatrics, 4, 23. DOI: https://doi.org/10.3389/fped.2016.00023

Jia, C. H., Feng, Z. S., Lin, X. J., Cui, Q. L., Han, S. S., Jin, Y., Liu, G. S., Yang, C. Z., Ye, X. T., Dai, Y. H., Liang, W. Y., Ye, X. Z., Mo, J., Ding, L., Wu, B. Q., Chen, H. X., Li, C. W., Zhang, Z., Rong, X., Huang, W. M., … Wu, F. (2022). Short term outcomes of extremely low birth weight infants from a multicenter cohort study in Guangdong of China. Scientific reports, 12(1), 11119. DOI: https://doi.org/10.1038/s41598-022-14432-2

Kardum, D., Grčic, B.F., Muller, A., & Dessardo, S. (2018). Outcomes of very low birth weight infants born by vaginal delivery versus cesarean section. Signa Vitae, 14(2); 46-50.

National Center for Health Statistics. (2012). Health, United States, 2011: With Special Feature on Socioeconomic Status and Health. Retrieved from: https://www.cdc.gov/nchs/data/hus/hus11.pdf

National Institutes of Health. (2022). Survival rate increases for extremely preterm infants in NIH-funded research network. Retrieved from: https://www.nih.gov/news-events/news-releases/survival-rate-increases-extremely-preterm-infants-nih-funded-research-network

Pusdekar, Y., Patel, A., Kurhe, K., Bhargav, S., Thorsten, V., Garces, A., Goldenberg, R., Goudar, S., Saleem, S., Esamai, F., Chomba, E., Bauserman, M., Bose, C., Liechty, E., Krebs, N., Derman, R., Carlo, W., Koso-Thomas, M., Nolen, T., McClure, E., & Hibberd P. (2020). Rates and risk factors for preterm birth and low birthweight in the global network sites in six low- and low middle-income countries. Reproductive Health, 17 (3), 187. DOI: https://doi.org/10.1186/s12978-020-01029-z

Rouse, D. J., Hirtz, D. G., Thom, E., Varner, M. W., Spong, C. Y., Mercer, B. M., Iams, J. D., Wapner, R. J., Sorokin, Y., Alexander, J. M., Harper, M., Thorp, J. M., Jr, Ramin, S. M., Malone, F. D., Carpenter, M., Miodovnik, M., Moawad, A., O'Sullivan, M. J., Peaceman, A. M., Hankins, G. D., … Eunice Kennedy Shriver NICHD Maternal-Fetal Medicine Units Network (2008). A randomized, controlled trial of magnesium sulfate for the prevention of cerebral palsy. The New England journal of medicine, 359(9), 895–905. DOI: https://doi.org/10.1056/NEJMoa0801187

Schindler, T., Koller-Smith, L., Lui, K., Bajuk, B., Bolisetty, S., & New South Wales and Australian Capital Territory Neonatal Intensive Care Units’ Data Collection (2017). Causes of death in very preterm infants cared for in neonatal intensive care units: a population-based retrospective cohort study. BMC pediatrics, 17(1), 59. DOI: https://doi.org/10.1186/s12887-017-0810-3

Stock, S. J., Thomson, A. J., & Papworth, S. (2022). Antenatal corticosteroids to reduce neonatal morbidity and mortality. BJOG, 129(8), e35-e60. DOI: https://doi.org/10.1111/1471-0528.17027

Suffolk, R., Agertoft, L., Johansen, M., & Zachariassen, G. (2019). Late-onset group B streptococcus infections and severe bronchopulmonary dysplasia in an extremely preterm born infant. BMJ case reports, 12(7), e229255. DOI: https://doi.org/10.1136/bcr-2019-229255

Vilanova, C. S., Hirakata, V. N., de Souza Buriol, V. C., Nunes, M., Goldani, M. Z., & da Silva, C. H. (2019). The relationship between the different low birth weight strata of newborns with infant mortality and the influence of the main health determinants in the extreme south of Brazil. Population health metrics, 17(1), 15. DOI: https://doi.org/10.1186/s12963-019-0195-7

World Health Organization [WHO website]. (2020). Newborns: improving survival and well-being. Retrieved from: https://www.who.int/news-room/fact-sheets/detail/newborns-reducing-mortality

World Health Organization [WHO website]. (2022). Newborn mortality. Retrieved from: https://www.who.int/news-room/fact-sheets/detail/levels-and-trends-in-child-mortality-report-2021#:~:text=There%20are%20approximately%206700%20newborn,to%202.4%20million%20in%202020.)(%20https://www.nih.gov/news-events/news-releases/survival-rate-increases-extremely-preterm-infants-nih-funded-research-network

Zhang, J., Sun, K., & Zhang, Y. (2021). The rising preterm birth rate in China: a cause for concern. The Lancet. Global health, 9(9), e1179–e1180. DOI: https://doi.org/10.1016/S2214-109X(21)00337-5

Downloads

Published

2023-07-03