• Jana Janisauska Jāzeps Vītols Latvian Academy of Music
  • Valdis Bernhofs Jāzeps Vītols Latvian Academy of Music



music listening, music perception, musical experience


Human beings exist within a perpetual sound environment, where ambient noises, work environment, conversations, music in supermarkets, cafes and other public establishments, as well as other sources of sound create a complex soundscape. To be able to navigate this environment, to receive timely warning signals and to participate in the communication process with the people around us, constant listening is required.

Listening is our way to experience, sense, understand and coherently react to this world. Although the term “listening” by which we define this activity affects almost the entire scope of our daily lives, one of the aspects that has been of interest to a wide spectrum of specialists, including philosophers, scientists, theoreticians and teachers is the listening to music. During the last decade, the interest in the research of several components of this activity has increased also in the field of music psychology, especially in the context of neuropsychology. However, until now, no in-depth analysis of the interaction of perceptual aspects of music listening has been conducted.

The purpose of this article is to provide a theoretical overview on the latest findings in the analysis of the perceptual factors in music listening, defining their mutual interaction. The findings of this article substantiate the statement that music listening can be viewed as a continuous and individualized interaction of perceptual processes that on various levels of cognition are fostered by the individual’s musical experience. The entirety of findings invites deeper analysis of the complex nature of this dual concept.



Alberti, P. W. (2012). The anatomy and physiology of the ear and hearing. World Health Organization. Retrieved from

Alluri, V., Toiviainen, P., Burunat, B., Kliuchko, M., Vuust, P. & Brattico, E. (2017). Connectivity patterns during music listening: Evidence for action-based processing in musicians. Human Brain Mapping, 38, 2955-2970.

Altenmüller, E., Bangert, M., & Gruhn, W. (2000). How the brain processes music. Medical Problems of Performing Artists, 15, 99-106. Retrieved from

Altenmüller, E., Schürmann, K., Lim, V. K., & Parlitz, D. (2002). Hits to the left, flops to the right: Different emotions during listening to music are reflected in cortical lateralization patterns. Neuropsychologia, 40, 2242–2256.

Angulo-Perkins, A., Aubé, W., Peretz, I., Barrios, F. A., Armony, J. L., & Concha, L. (2014). Music listening engages specific cortical regions within the temporal lobes: Differences between musicians and non-musicians. Cortex, 59, 126-137.

Baars, B. J., & Gage, N. M. (2013). Fundamentals of Cognitive Neuroscience: A Beginner's Guide. United States: Academic Press.

Benner, J., Wengenroth, M., Reinhardt, J., Stippich, C., Schneider, P., & Blatow, M. (2017). Prevalence and function of Heschl's gyrus morphotypes in musicians. Brain Structure and Function, 222(8), 3587–3603.

Bernhofs, V. (2013). Skaņaugstuma un ritma struktūras dzirdes uzmanības treniņam. Promocijas darbs mākslas doktora zinātniskā grāda (Dr. art.) iegūšanai. Rīga: Jāzepa Vītola Latvijas Mūzikas akadēmija.

Binder, J. R., Frost, J. A., Hammeke, T. A., Bellgowan, P. S. F., Springer, J. A., Kaufman, J. N., & Possing, E. T. (2000). Human temporal lobe activation by speech and nonspeech sounds. Cerebral Cortex, 10(5), 512-528.

Corrigall, K. A., & Trainor, L. J. (2010). Musical enculturation in preschool children: Acquisition of key and harmonic knowledge. Music Perception, 28(2), 195-200.

D’Ausilio, A., & Altenmüller, E., & Belardinelli, M., & Lotze, M. (2006). Cross-modal plasticity of the motor cortex while listening to a rehearsed musical piece. European Journal of Neuroscience, 24, 955-958.

Deutsch, D. (2007). Music perception. Frontiers in Bioscience, 12, 4473–4482.

Disbergen, N. R., Valente, G., Formisano, E., & Zatorre, R. J. (2018). Assessing top-down and bottom-up contributions to auditory stream segregation and integration with polyphonic music. Frontiers in Bioscience, 12(121), 1-16.

Drake, C., & Bertrand, D. (2003). The quest for universals in temporal processing in music page. In I. Peretz & R. J. Zatorre, The Cognitive Neuroscience of Music (pp 21-31). New York: Oxford University Press.

Fujioka, T., Ross, B., Kakigi, R., Pantev, C., & Trainor, L. J. (2006). One year of musical training affects development of auditory cortical-evoked fields in young musicians. Brain, 129, 2593-2608.

Gold, B. P., Mas-Herrero, E., Zeighami, Y., Benovoy, M., Dagher, A., & Zatorre, R. J. (2019). Musical reward prediction errors engage the nucleus accumbens and motivate learning. Proceedings of the National Academy of Sciences, 116(8), 3310-3315.

Hannon, E. E., & Trainor, L. J. (2007). Music acquisition: Effects of enculturation and formal training on development. Trends in Cognitive Sciences, 11(11), 466-472.

Hausmann, M., Hodgetts, S., & Eerola, T. (2016). Music-induced changes in functional cerebral asymmetries. Brain and Cognition, 104, 58–71.

Janata, P., Tillmann, B., & Bharucha, J. (2002). Listening to polyphonic music recruit’s domain-general attention and working memory circuits. Cognitive, Affective, & Behavioral Neuroscience, 2(2), 121–140.

Janzen, T. B., & Thaut, M. H. (2018). Cerebral organization of music processing. In M. H. Thaut & D. A. Hodges (Eds.), The Oxford Handbook of Music and The Brain (pp 1-41). New York: Oxford University Press.

Jaušovec, N., & Habe, K. (2004). The influence of auditory background stimulation (Mozart's Sonata K. 448) on visual brain activity. International Journal of Psychophysiology, 51(3), 261-271.

Jentschke, S., & Koelsch, S. (2009). Musical training modulates the development of syntax processing in children. NeuroImage, 47, 735–744.

Koelsch, S., & Siebel, W. A. (2005). Towards a neural basis of music perception. Trends in Cognitive Science, 9(12), 578-584.

Koelsch, S. (2010). Towards a neural basis of music-evoked emotions. Trends in Cognitive Sciences, 14(3), 131-137.

Kraus, N., & Chandrasekaran, B. (2010). Music training for the development of auditory skills. Nature Reviews. Neuroscience, 11, 599-605.

Kraus, N., & Slater, J. (2015). Music and language: Relations and directions. Handbook of Clinical Neurology, 129, 207-222.

Mas-Herrero, E., Marco-Pallares, J., Lorenzo-Seva, U., Zatorre, R. J., & Rodriguez-Fornells, A. (2013). Individual differences in music reward experiences. Music Perception, 31(2), 118-138.

McDermott, J. H., & Oxenham, A. J. (2008). Music perception, pitch, and the auditory system. Current Opinion in Neurobiology, 18, 452-463.

Middlebrooks, J. C. (2009). Auditory system: Central pathways. In L. R. Squire (Ed.), Encyclopedia of Neuroscience (pp 745-752). Oxford: Elsevier.

Moore, D. R. (2012). Listening difficulties in children: Bottom-up and top-down contributions. Journal of Communication Disorders, 45(6): 411–418.

Pearce, M., & Wiggins, G. A. (2006). Expectation in melody: The influence of context and learning. Music Perception, 25(5), 377-405.

Pearce, M., & Wiggins, G. A. (2012). Auditory expectation: The information dynamics of music perception and cognition. Topics in Cognitive Science, 4, 625-652.

Peretz, I., & Zatorre, R. J. (2005). Brain organization for music processing. Annual Reviews, 56, 89–114.

Putkinen, V., Saarikivi, K., & Tervaniemi, M. (2013). Do informal musical activities shape auditory skill development in preschool-age children? Frontiers in Psychology, 4(572), 1-6.

Putniņš, A. L.; Raščevska, M. (2016). Angļu-latviešu psiholoģijas terminu vārdnīca. Rīga: LU Akadēmiskais apgāds

Reitan, I. E. (2013). Listening to music – with professional ears. In I.E. Reitan, A. K. Bergby, V. C. Jakhelln, G. Shetelig, & I. F. Øye (Eds). Aural Perspectives. On Musical Learning and Practice in Higher Music Education (pp 53-57). Oslo: Norwegian Academy of Music. Retrieved from

Rohrmeier, M. A., & Koelsch, S. (2012). Predictive information processing in music cognition. A critical review. International Journal of Psychophysiology, 83, 164-175.

Salimpoor, V. N., Benovoy, M., Longo, G., Cooperstock, J. R., & Zatorre, R. J. (2009). The reward aspects of music listening are related to degree of emotional arousal. PLoS ONE, 4(10), e7487.

Salimpoor, V. N., Zald, D. H., Zatorre, R. J., Dagher, A., & McIntosh, A. R. (2015). Predictions and the brain: How musical sounds become rewarding. Trends in Cognitive Sciences, 19(2), 86–91.

Särkämö, T., Tervaniemi, M., & Huotilainen, M. (2013). Music prediction and cognition: Development, neural basis, and rehabilitative use of music. Wiley Interdisciplinary Reviews: Cognitive Science, 4(4), 441-451.

Schlaug, G. (2001). The brain of musicians: A model for functional and structural adaptation. In R. J. Zatorre, I. Peretz, (Eds.), The Biological Foundations of Music (281-299). New York: New York Academy of Sciences.

Schneider, P., Sluming, V., Roberts, N., Scherg, M., Goebel, R., Specht, H. J., ... & Rupp, A. (2005). Structural and functional asymmetry of lateral Heschl's gyrus reflects pitch perception preference. Nature Neuroscience, 8(9), 1241-1247.

Schneider, P., & Wengenroth, M. (2009). The neural basis of individual holistic and spectral sound perception. Contemporary Music Review, 28(3), 315-328.

Seither-Preisler, A., Parncutt, R., & Schneider, P. (2014). Size and synchronization of auditory cortex promotes musical, literacy, and attentional skills in children. The Journal of Neuroscience, 33(34), 10937–10949.

Seppänen, M., Braticco, E., & Tervaniemi, M. (2007). Practice strategies of musicians modulate neural processing and the learning of sound-patterns. Neurobiology of Learning and Memory, 87, 236–247.

Serrallach, B., Groß, C., Bernhofs, V., Engelmann, D., Benner, J., Gündert, N., ... & Seither-Preisler, A. (2016). Neural biomarkers for dyslexia, ADHD, and ADD in the auditory cortex of children. Frontiers in Neuroscience, 10, 324, 1–20.

Spence, C., & Santangelo, V. (2010). Auditory attention. In C. Plack, (Ed.), Oxford Handbook of Auditory Science. Hearing (pp 249-270). New York: Oxford University Press.

Stewart, A., Kriegstein, K. von, Warren, J. D., & Griffiths, T. D. (2006). Music and the brain: Disorders of musical listening. Brain, 129, 2533–2553.

Strait, D. L., Kraus, N., Parbery-Clark, A., & Ashley, R. (2010) Musical experience shapes top-down auditory mechanisms: Evidence from masking and auditory attention performance. Hearing Research, 261, 22–29.

Tillmann, B., Bharucha, J. J., & Bigand, E. (2003). Learning and perceiving musical structures: Further insights from artificial neural networks. In I. Peretz & R. J. Zatorre, (Eds.), The Cognitive Neuroscience of Music (pp 109 – 123). New York: Oxford University Press.

Trainor, L. J., & Shahin, A., & Robberts, L. E. (2003). Effects of musical training on the auditory cortex in children. Annals of the New York Academy of Sciences, 999, 506-513.

Turker, S., Reiterer, M. S., Seither-Preisler, A., & Schneider, P. (2017). "When music speaks": Auditory cortex morphology as a neuroanatomical marker of language aptitude and musicality. Frontiers in Psychology, 8(2096), 1–17.

Werner, L. A. (2007). Human auditory development. The Senses: A Comprehensive Reference, 3, 871-893.

Wessinger, C. M., VanMeter, J., Tian, B., Van Lare, J., Pekar, J., & Rauschecker, J. P. (2001). Hierarchical organization of the human auditory cortex revealed by functional magnetic resonance imaging. Journal of Cognitive Neuroscience, 13(1), 1–7.

Winkler, I., Denham, S. L. & Nelken, I. (2009). Modeling the auditory scene: Predictive regularity representations and perceptual objects. Trends in Cognitive Sciences, 13(12), 532–540.

Zatorre, R. J., & Halpern, A. R. (2005). Mental concerts: Musical imagery and auditory cortex. Neuron, 47(1), 9–12.