SOFTWARE COMPLEX FOR PARTS RECOGNITION AS THE BASIS OF EDUCATIONAL LABORATORY WORK
DOI:
https://doi.org/10.17770/sie2021vol5.6364Keywords:
assembly platform, Bayesian criterion, digital image, digital image processing, machine learning, pattern recognition, technological areaAbstract
The article discusses the scientific and methodological foundations of laboratory work in vision systems using the author's algorithms for pattern recognition. The results were used to prepare masters of technical specialties at the Pskov State University. Another approach to using digital technologies for processing images of the working area is proposed. Some aspects of solving problems of identification of parts, determination of their location, control in automated assembly is described. The hardware-software complex in the article performs data processing and measurements in parallel with the flow of the technological process. The hardware and software complex expands the capabilities of flexible assembly platforms when assembling parts with different mass-inertial characteristics due to the geometric shape and dissimilar materials.References
Direct Industry by VirtualExpo Group. (2021). Svarka, Zavinchivanie i Skleivanie, Drugoe oborudovanie dlja sborki - Vse promyshlennye proizvoditeli kategorii - Videoroliki (2021a, 2021b January 5). Retrieved from https://www.directindustry.com.ru/cat/svarka-zavincivanie-skleivanie/oborudovanie-sborki-N-2884.html
Kayasa, M.J., & Herrmann, C. (2012). A Simulation-based Evaluation of Selective and Adaptive Production Systems (SAPS) Supported by Quality Strategy in Production. Procedia CIRP, 3, 14–19. https://doi.org/10.1016/j.procir.2012.07.004
Lanza, G., Haefner, B., & Kraemer, A. (2015). Optimization of selective assembly and adaptive manufacturing by means of cyber-physical system based matching. CIRP Annals, 64(1), 399–402. https://doi.org/10.1016/j.cirp.2015.04.123
Patrick, E. A. (1972). Fundamentals of pattern recognition. Prentice-Hall information and system science series. Englewood Cliffs, N.J.: Prentice-Hall.
Patrick, E. A., & Fattu, J. M. (op. 1986). Artificial intelligence with statistical pattern recognition. New Jersey: Prentice Hall.
Samarkina, E. I., Samarkin, A. I., Sokolova, I. G., & Zharov, I. N. (2019). Metodika izmerenija parametrov listovyh plastinok po cifrovomu izobrazheniju s ispol'zovaniem specializirovannogo programmnogo obespechenija. Rastitel'nye Resursy, 55(4), 537–547. https://doi.org/10.1134/S0033994619040101
Samarkina, E. I., & Samarkin A.I. (2021). Alex-Samarkin/PartsRec. https://github.com/Alex-Samarkin/PartsRec .
Shirman, I. D. (1998). Radioėlektronnye sistemy: Osnovy postroenii︠a︡ i teorii︠a︡: spravochnik. Moskva: ZAO “MAKVIS”.
Shirman, I. D. (2000). Radiolokat︠s︡ionnoe raspoznavanie i metody matematicheskogo modelirovanii︠a︡. Radiolokat︠s︡ii︠a︡ i radiometrii︠a︡: vyp. 2. Moskva: Zhurnal Radiotekhnika.
Wang, P. S. P., Pau, L.‑F., & Chen, C. H. (1993). Handbook of pattern recognition & computer vision. Singapore: World Scientific.