• Normunds Stanka Mg. oec., Latvia University of Life Sciences and Technologies, Jelgava
  • Anda Zvaigzne Dr. oec., associated professor, leading researcher, Rezekne Academy of Technologies, Rezekne
  • Inta Kotane Ph.D., assistant professor, leading researcher, Rezekne Academy of Technologies, Rezekne



electricity, photovoltaics, renewable energy, solar energy


Purpose and aim of the study: The present research aims to investigate and assess the production and consumption of solar energy.

Design / Methodology / Approach:  The research employed the following methods: descriptive and logical construction were used for reviewing and analysing research papers and other information sources, as well as for scientific discussion. Statistical analysis was employed to process and analyse secondary data on trends in the use of solar panel systems in the world and in Latvia. The graphic method was applied to better represent and compare the research results.

Main Findings: It was concluded that the share of solar energy in the world tended to increase significantly. However, Latvia lagged far behind the neighbouring countries in terms of solar energy generation and was in last place in the entire European Union in terms of total installed capacity of solar panel systems. In Latvia, a significant increase in solar energy consumption could be observed from 2022.

Originality: The research examined the technology of generating solar energy and factors in the output of solar energy, summarized information on trends in solar energy consumption in Latvia and the world and identified the role of solar energy in Latvia by comparing the share of solar energy consumption with the share of consumption of other renewable energy sources and the situation in neighbouring countries and the world.

Implications: The present research represents the basis for further research on solar energy production and consumption


Download data is not yet available.


Abdallah, R., Natsheh, E., Juaidi, A., Samara, S., & Manzano-Agugliaro, F. (2020). A multi-level world comprehensive neural network model for maximum annual solar irradiation on a flat surface. Energies, 13(23), paper No. 6422.

Albertus, P., Manser, J.S., & Litzelman, S. (2020) Long-duration electricity storage applications, economics, and technologies. Joule, 4(1), 21 – 32.

Aydin, E., Allen, T.G., Bastiani, M., Xu, L., Ávila, J., Salvador, M., Kerschaver, E, & Wolf, S. (2020). Interplay between temperature and bandgap energies on the outdoor performance of perovskite/silicon tandem solar cells. Nature Energy, 5(11), 851 – 859.

Bravo Hidalgo, D., Jiménez Borges, R., & Valdivia Nodal, Y. (2018) Applications of solar energy: history, sociology and last trends in investigation. Produccion & Limpia, 13(2), 21 – 28.

CSB (2022). Electrical capacity and produced electricity from renewables 1990 - 2022 1990–2021

CSB (2023). Share of renewable energy resources 2004 - 2021.

Coşgun, A.E., & Demir, H. (2022). The experimental study of dust effect on solar panel efficiency. Politeknik Dergisi, 25(4), 1429 – 1434.

Minsitry of Economics (2022). Atvieglo būvniecības procesu saules paneļu uzstādīšanai.

Eurostat (2023) Renewable energy statistics.

Fares, R.L., & Webber, M.E. (2017). The impacts of storing solar energy in the home to reduce reliance on the utility. Nature Energy, 2(2), 1 – 10.

Fraas, L.M. (2014). History of solar cell development. Low-Cost Solar Electric Power, 1 – 12.

Frank, S., Böttcher, H., Gusti, M., Havlík, P., Klaassen, G., Kindermann, G., & Obersteiner, M. (2016). Dynamics of the land use, land use change, and forestry sink in the European Union: the impacts of energy and climate targets for 2030. Climatic Change, 138, 253 – 266.

Goldbergs, J. (2022). “Latvijai vajadzīgos saules un vēja parkus var uzbūvēt ātri”, Dienas Bizness, 2022. gada 11. oktobris, 28. – 31. lpp.

Gong, J., Li, C. & Wasielewski, M.R. (2019). Advances in solar energy conversion. Chemical Society Reviews, 48(7), 1862 – 1864.

Gopalakrishna, M. & Dey, S. (2022). Study and Modelling of Solar Energy and Solar Power Tower. Journal of Interdisciplinary Cycle Research, 14(4), 360 – 365.

Hafez, A.Z., Soliman, A., El-Metwally, K.A. & Ismail, I.M. (2017). Tilt and azimuth angles in solar energy applications – A review. Renewable and Sustainable Energy Reviews, 77, 147 – 168.

International Renewable Energy Agency (2022). Irenastat online data query tool.

Jude T. (2023). 8 most efficient solar panels.

Kabir, E., Kumar, P., Kumar, S., Adelodun, A.A. & Kim, K.H. (2018). Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews, 82, 894 – 900.

Kannan, N. & Vakeesan, D. (2016). Solar energy for future world: A review. Renewable and Sustainable Energy Reviews, 62, 1092 – 1105.

Latvenergo (2023). Par mums: Ražošana.

Maka, A.O. & Alabid, J.M. (2022). Solar energy technology and its roles in sustainable development. Clean Energy, 6(3), 476-483.

Noteikumi par atbalsta programmu viena dzīvokļa dzīvojamo māju atjaunošanai un energoefektivitātes paaugstināšanai. (11/02/2021). MK noteikumi Nr. 103.

Olabi, A.G. & Abdelkareem, M.A. (2022). Renewable energy and climate change. Renewable and Sustainable Energy Reviews, 158, paper No. 112111.

Quintana-Rojo, C., Callejas-Albiñana, F.E., Tarancón, M.Á. & Martínez-Rodríguez, I. (2020). Econometric studies on the development of renewable energy sources to support the European Union 2020–2030 climate and energy framework: A critical appraisal. Sustainability, 12(12), paper No. 4828.

REN21 Secretariat (2023). Renewables 2022: Global status report.

Rivža, P. (sci. ed.) (2012). Atjaunojamā enerģija un tās efektīva izmantošana Latvijā: Monogrāfija. Jelgava: LLU, 392 lpp.

Sadales tīkls (2023a). Mikroģeneratora pieslēgšana.

Sadales tīkls (2023b). Elektrostacijas pieslēgšana.

Sadales tīkls (2023c). Sadales tīkls: Elektroapgādes apskats 2022.

Sadales tīkls (2023d). Sadales tīkls: Elektroapgādes apskats 2023. gada janvāris – marts.

Sathyanarayana, P., Ballal, R., Sagar, P.L., & Kumar, G. (2015). Effect of shading on the performance of solar PV panel. Energy and Power, 5(1A), 1 – 4.

Satpathy, P.R., Aljafari, B., & Thanikanti, S.B. (2022). Power losses mitigation through electrical reconfiguration in partial shading prone solar PV arrays. Optik, 259, paper No. 168973.

Sistēmas pieslēguma noteikumi elektroenerģijas ražotājiem. (14/04/2022). Sabiedrisko pakalpojumu regulēšanas komisijas padomes lēmums Nr. 1/8.

Sistēmas pieslēguma noteikumi elektroenerģijas sadales sistēmai. (03/06/2021). Sabiedrisko pakalpojumu regulēšanas komisijas padomes lēmums Nr. 1/8.

Solargis (2021). Global Horizontal Irradiation.

Stanka, N., Aboltins, A., & Palabinskis, J. (2020). Impact of high temperature and other factors on PV module efficiency on small farms in Latvia in Engineering for Rural Development: proceedings of the international scientific conference, 19., 472 – 480.

Suncalc (2023). Solar data for the selected location.,24.1069,5/2023.06.21/13:26/1/3

Tian, Y., & Zhao, C.Y. (2013). A review of solar collectors and thermal energy storage in solar thermal applications. Applied Energy, 104, 538 – 553.

Vilciņš, A. (2022). “Viens izdevīgākais piedāvājums neeksistē”, Dienas Bizness, 2022. gada 8. novembris, 28. – 32. lpp.

Yoon, S., Park, J., Lee, C., Kim, S., Choi, Y., Kwak, S., Kim, H., & Kim, J. (2023). Optimal orientation of solar panels for multi-apartment buildings. Mathematics, 11(4), paper No. 938.




How to Cite

Stanka, N., Zvaigzne, A., & Kotane, I. (2023). ASSESSMENT OF SOLAR ENERGY PRODUCTION AND CONSUMPTION. Journal of Regional Economic and Social Development, 15, 63-75.