APPLICATION OF CHAID DECISION TREES AND NEURAL NETWORKS METHODS IN FORECASTING THE YIELD OF CEREAL INDUSTRY COMPANIES

Authors

  • Lāsma Priževoite Rezekne Academy of Technologies, Rezekne (LV)
  • Dr.sc.ing.,prof. Pēteris Grabusts Rezekne Academy of Technologies, Rezekne (LV)
  • Ph.D., docente Inta Kotāne Rezekne Academy of Technologies, Rezekne (LV)

DOI:

https://doi.org/10.17770/het2024.28.8264

Keywords:

CHAID decision tree, neural networks, grain-growing industry, yield, forecasting

Abstract

Within the research the most important factors affecting the grain yield and their impact indicators were considered. The application of CHAID decision trees and neural networks in forecasting aspects of the grain-growing industry was investigated. In the study, the organic agricultural companies of the Latgale region, which are engaged in grain cultivation, were selected and the harvest volumes of the companies and their influencing factors were collected. Based on the collected data, grain yield forecasting was performed using CHAID decision tree and neural network methods.

Downloads

Download data is not yet available.

References

Lauku tīkls (2022). Graudkopībā viss tiek plānots par labu ražai. https://www.laukutikls.lv/nozares/lauksaimnieciba/raksti/graudkopiba-viss-tiek-planots-par-labu-razai, sk. 28.10.2023.

Blake, J.J., Spink, J.H., Dyer, C. (2003). Factors affecting cereal establishment and its prediction Retrieved October, 29, 2023, from https://projectblue.blob.core.windows.net/media/Default/Research%20Papers/Cereals%20and%20Oilseed/rr51_complete_final_report.pdf

Kazlauska, D. (2022). Kā izvēlēties piemērotāko sēklas materiālu. https://www.saimnieks.lv/raksts/ka-izveleties-piemerotako-seklas-materialu, sk. 30.10.2023.

NicheAgriculture [n.d.]. How Rainfall Affects Crop Health. Retrieved November, 11, 2023, from https://www.nicheagriculture.com/how-rainfall-affects-crop-health/

Liliane, T.N., Charles, M.S. (2019). Factors Affecting Yield of Crops. Retrieved October, 29, 2023, from https://www.intechopen.com/chapters/70658

Gaile, Z. [n.d.]. Augsnes apstrādes veidi un augsnes apstrādes sistēmas. https://www.lbtu.lv/sites/default/files/files/lapas/Augsnes_apstrades_veidi.pdf, sk. 30.10.2023.

Kreišmane, S., Popluga, D., Naglis-Liepa, K., Lēnerts, A. (2019). Augsnes auglības uzlabošana saimniecību ienesīgumam un labvēlīgākam klimatam. https://www.saimnieks.lv/raksts/augsnes-auglibas-uzlabosana-saimniecibu-ienesigumam-un-labveligakam-klimatam, sk. 30.10.2023.

Vaderstad [b.g.]. Tradicionālā augsnes apstrāde. https://www.vaderstad.com/lv/zini-ka/augsnes-sagatavosana/tradicionala-augsnes-apstrade/, sk. 30.10.2023.

Vaderstad [b.g.]. Minimālā augsnes apstrāde. https://www.vaderstad.com/lv/zini-ka/augsnes-sagatavosana/minimala-augsnes-apstrade/, sk. 30.10.2023.

Vaderstad [b.g.]. Tiešā sēja. https://www.vaderstad.com/lv/zini-ka/augsnes-sagatavosana/tiesa-seja/, sk. 30.10.2023.

Melece, L. (2020). Augsnes apstrādes tehnoloģijas. https://www.arei.lv/sites/arei/files/files/projects/EIP_sanaksme_4.03.2020._AREI_LMelece_Augsnes%20apstrade.pdf, sk. 30.10.2023.

Kazlauska, D. (2022). Kā izvēlēties piemērotāko sēklas materiālu. https://www.saimnieks.lv/raksts/ka-izveleties-piemerotako-seklas-materialu, sk. 30.10.2023.

Narayanan, S. (2018). Effects of high temperature stress and traits associated with tolerance in wheat. Open Access Journal of Science, Vol.2, Issue 3, p.177-186. Retrieved October, 29, 2023, from https://doi.org/10.15406/oajs.2018.02.00067

Gammans, M., Merel, P., Ortiz-Bobea, A. (2017). Negative impacts of climate change on cereal yields: statistical evidence from France. Enviromental Research Letters, Vol. 12, Issue 5. Retrieved October, 29, 2023, from https://iopscience.iop.org/article/10.1088/1748-9326/aa6b0c

Centrālā statistikas pārvalde (2023). Lauksaimniecības kultūraugu sējumu kopraža un vidējā ražība – Kultūraugi, Rādītājs un Laika periods.

https://data.stat.gov.lv/pxweb/lv/OSP_PUB/START__NOZ__LA__LAG/LAG020/table/tableViewLayout1/, sk. 28.10.2023

Java [n.d.]. Crop Yield Prediction Using Machine Learning. Retrieved November, 02, 2023, from https://www.javatpoint.com/crop-yield-prediction-using-machine-learning

Sreerama, A., Sagar, B.M. (2020). A Machine Learning Approach to Crop Yield Prediction. International Research Journal of Engineering and Technology (IRJET), Vol. 07, Issue 05. Retrieved October, 31, 2023, from https://www.irjet.net/archives/V7/i5/IRJET-V7I51246.pdf

Burhan, H.A. (2022). Crop yield prediction by integrating meteorological and pesticides use data with machine learning methods: an application for major crops in turkey. Retrieved October, 31, 2023, from https://dergipark.org.tr/en/download/article-file/2558217

Ramzai, J. (2020). Simple guide for Top 2 types of Decision Trees: CHAID and CART. Retrieved November, 23, 2023, from https://towardsdatascience.com/clearly-explained-top-2-types-of-decision-trees-chaid-cart-8695e441e73e

Wells, C. (2023). A guide to CHAID: a decision tree algorithm for data analysis. Retrieved November, 23, 2023, from https://www.adience.com/blog/how-to/a-guide-to-chaid-a-decision-tree-algorithm-for-data-analysis/

Khaki, S., Wang, L. (2019). Crop Yield Prediction Using Deep Neural Networks. Retrieved October, 31, 2023, from https://www.frontiersin.org/articles/10.3389/fpls.2019.00621/full

Sadenova, M., Beisekenov, N., Varbanov, P.S., Pan, T. (2023). Application of Machine Learning and Neural Networks to Predict the Yield of Cereals, Legumes, Oilseeds and Forage Crops in Kazakhstan. Agriculture, Vol. 13, Issue, 6. Retrieved October, 31, 2023, from https://doi.org/10.3390/agriculture13061195

Downloads

Published

2024-09-10

How to Cite

[1]
L. Priževoite, P. Grabusts, and I. Kotāne, “APPLICATION OF CHAID DECISION TREES AND NEURAL NETWORKS METHODS IN FORECASTING THE YIELD OF CEREAL INDUSTRY COMPANIES”, HET, no. 28, pp. 81–89, Sep. 2024, doi: 10.17770/het2024.28.8264.