DEEP LEARNING FOR APPLE AND PEAR RECOGNITION
DOI:
https://doi.org/10.17770/het2020.24.6761Keywords:
AlexNet, apple, CNN, Fruits360, Food2030, neural network, pearAbstract
The aim of this work is to develop a neural network, which is able to recognize apples and pears. To achieve the goal, the authors of this work used the architecture of the neural network AlexNet and the open dataset “Fruits360”. A trained model showed a good result testing it on validation images: total accuracy 0.97 and latency 35ms/step. In the future research, authors consider to train the neural network model using the MobileNet architecture and verify it using the Cohen`s Kappa coefficient.Downloads
References
Bioekonomikas politika [tiešsaiste], [atsauce uz 02.04.2020]. Pieejams: https://ec.europa.eu/research/bioeconomy/index.cfm;jsessionid=1704F40ED0043811F4D22A4F02D1EF7D.cfusion10101?pg=policy&lib=food2030&CFID=23513089&CFTOKEN=a85794a01c992bd5-91D8880F-A7BE-42A6-2E4773E9A2A41389
Konvolūcijas neironu tīkls [tiešsaiste], [atsauce uz 02.04.2020]. Pieejams: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
AlexNet arhitektūra [tiešsaiste], [atsauce uz 02.04.2020]. Pieejams: https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
Fruits360 datu kopa [tiešsaiste], [atsauce uz 02.04.2020]. Pieejams: https://www.kaggle.com/moltean/fruits
TensorFlow [tiešsaiste], [atsauce uz 02.04.2020]. Pieejams: https://www.tensorflow.org/about
Anaconda rīks [tiešsaiste], [atsauce uz 02.04.2020]. Pieejams: https://www.anaconda.com/why-anaconda/
Cohen`s Kappa [tiešsaiste], [atsauce uz 02.04.2020]. Pieejams: https://www.statisticshowto.com/cohens-kappa-statistic/
MobileNet arhitektūra [tiešsaiste], [atsauce uz 02.04.2020]. Pieejams: https://towardsdatascience.com/review-mobilenetv1-depthwise-separable-convolution-light-weight-model-a382df364b69