
27. starptautiskā studentu zinātniski praktiskā konference

Cilvēks. Vide. Tehnoloģijas

 https://doi.org/10.17770/het2023.27.7378

5

DATABASE USAGE IN SEMANTIC ONTOLOGIES

DATUBĀZES IZMANTOŠANA SEMANTISKAJĀS ONTOLOĢIJĀS

Author: Daniēls ZEPS, e-mail: dz22036@edu.rta.lv

Scientific supervisors: Imants ZAREMBO, Dr.sc.ing., e-mail: imants.zarembo@rta.lv

Sergejs KODORS, Dr.sc.ing., e-mail: sergejs.kodors@rta.lv

Rezekne Academy of Technologies

Atbrīvošanas aleja 115, Rēzekne

Abstract. Semantic ontology languages are a way for experts to write down their knowledge in a

commonly accepted way, it allows information to be understood by humans and machines. However, ontology

tools do not provide the ability to use this data in a database for geodata-based analysis easily. The project is

focused on ontology web language (OWL) usage for web content generation for business-to-business

communication using geodata analysis. This specific paper is focused on selecting a database that could

support the ontology tools. In the research scope, different databases were checked (relationship, document,

and graph databases). In conclusion, graph databases were the most similar to the structure of the ontology,

so it was chosen to use Neo4j as the database.

Keywords: databases, graph databases, ontology, semantic, web content generation.

Introduction

Semantic ontology languages (SOL) are a good way to represent data in a visual format,

that is both understandable to humans and computers. It allows you to see the connections

between different data points. It allows communication between human and computer

languages with almost no restrictions (Understanding Semantic Web and Ontologies: Theory

and Applications, 2010). While good for data depiction, SOL is not good for data storage and

is not easily accessible, as a result, an additional database needs to be used to store data.

The project is focused on ontology web language (OWL) usage for web content

generation for business-to-business communication using geodata analysis. The project will

focus on three parts – server code writing, database selection, and OWL conversion to a

database. To enable web content viewing and server hosting it was chosen to use Django, due

to developers’ team preference.

This paper is focused on determining which database will support SOL the best. The

purpose of comparing databases is due to possible complications that could be found in the later

stages of the project due to the lack of databases flexibility or limitations of data structure and

its storage as a result it might be very hard to take data from Web Protégé and convert it.

Research goal: find the best-fitting database for storing information from OWL.
Tasks:

1) Study types of databases;

2) Select databases that are compatible with Django;

3) Test out selected databases on a sample ontology;

4) Evaluate the results.

Materials and methods
Primary criteria for a good database tool

Since the main project uses Web Protégé and has to use Django to host web-generated

content the requirements will be different and that needs to be considered before picking a

database for the project. For purposes of this paper, it was decided that testing out different

types of databases would give a better insight into which database to use. It was decided to test

out relational databases (PostgreSQL – Django built-in database), document-oriented

databases (MongoDB), and graph databases (GraphDB, Neo4j).

https://doi.org/10.17770/het2023.27.7378

6

To select the best-fitting database the following criteria were selected:

1) Supports Python Django.

2) Is open source or free to use;

3) Supports unstructured data;

4) Supports data relationships;

5) Has simple Python request syntax;

6) Can process geo data.
What are graph databases?
Graph databases (see Fig.1) are a way of storing information based on Graph theory in

the field of mathematics. They are mostly used in social media, for example, Facebook and

Instagram (Wikipedia, 2023). Data in a graph database is stored as relationships, which means

that it can be accessed faster, due to data connections. Graph databases perform fewer data

requests because data is directly connected, so there is no repeated indexing. Graph databases

are better used if there are many joins between data points (Neo4j, 2023).

Results and discussion

After having researched and tested all of the databases the following data was gathered

(see Table 1). The databases were tested using a sample OWL data that was converted into a

database and by using the database tools.

PostgreSQL (PostgreSQL, 2023) (Fig.2) was the Django built-in database which was

good in testing with sample ontology. It is based on SQL, so it has a lot of extensions. This is a

relational database so information is more secure, but this also means that it does not support

unstructured data like others. All the fields would have to be defined for all entries which would

make it take up a lot of unused space and make the scheme very complex.

Fig.1. Visual depiction of a graph database

Table.1. Comparison of databases based on previously mentioned criteria
 PostgreSQL MongoDB GraphDB Neo4j

Supports Python Django X X X

It is open source or free to use X X X X

Supports unstructured data X X

Supports data relationships X X X

Has a simple Python request syntax X X

Can process geo data X

 Total 4 4 2 5

7

MongoDB (MongoDB, 2023) (Fig.3) has the advantages of having built-in GeoJSON and

no schema, which means that direct data transfer is simpler, but it still was the least useful due

to it not supporting relationships and requiring the use of additional code to enable this

functionality, which would make code generation very difficult.

PostgreSQL (PostgreSQL, 2023) (Fig.2) was the Django built-in database which was

good in testing with sample ontology. It is based on SQL, so it has a lot of extensions. This is a

relational database so information is more secure, but this also means that it does not support

unstructured data like others. All the fields would have to be defined for all entries which would

make it take up a lot of unused space and make the scheme very complex.

MongoDB (MongoDB, 2023) (Fig.3) has the advantages of having built-in GeoJSON and

no schema, which means that direct data transfer is simpler, but it still was the least useful due

to it not supporting relationships and requiring the use of additional code to enable this

functionality, which would make code generation very difficult.

GraphDB (ontotext, 2023) stores data in RDF format which is one of the formats that

OWL allows data to be stored in, which makes it similar to WebProtégé, but it was not usable

in this project due to not having a Python library (one could not be found during research).

Neo4j (Neo4j, 2023) (Fig.4) was deemed the best option for this project because it

supports unstructured data and has easier syntax for user interface and web generation, making

Python files and Django backend programming simpler. While not storing data in a similar

format it displays data in a similar format to OWL, because it is a graph database and represent

data connections that are present in OWL in a similar way. The only meaningful downside to

Neo4j is data being less secure, due to it not having a schema.

Fig.2. PostgreSQL code showing foreign key query requests

Fig.2. PostgreSQL code showing foreign key query requests

Fig.3. MongoDB code showing foreign key query requests

Fig.4. Neo4j code showing foreign key query requests

8

Conclusions

For purposes of the main project graph databases would be more useful because they

focus on data relationships and data relationships which makes them much more similar to

OWL, plus the added flexibility of unstructured data is going to make OWL conversion less

strained by database requirement. Additionally, Neo4j built-in tools provide the ability to verify

that the SOL data has been translated correctly and make testing faster.

Summary

SOL is a powerful tool for data representation. It allows users to represent data and see

relationships between data points. The goal of this paper is to find a database that can support

SOL. A database that could be used should support:

1) Supports Python Django;

2) Is open source or free to use;

3) Supports unstructured data;

4) Supports data relationships;

5) Has simple Python request syntax;

6) Can process geo data.

It was decided to test out relational databases (PostgreSQL – Django built-in database),

document-oriented databases (MongoDB), and graph databases (Neo4j, Graph DB). Out of

these graph databases, Neo4j is the best-fitted one due to its focus on relationships and built-in

tools for data analysis.

Acknowledgement
This research is funded by the Latvian Council of Science, project “Digital Twin to Promote the

Development of Tourism Competitiveness and Complementarity: the Use Case in Latgale region”,

project No. lzp-2022/1-0350.

Bibliography

1. MongoDB. (2023, February 17). MongoDB. Retrieved from MongoDB: https://www.mongodb.com/
2. Neo4j. (2023, February 6). Neo4j Developer. Retrieved from Neo4j: https://neo4j.com/developer/graph-

database/ontotext. (2023, February 17). GraphDB. Retrieved from GraphDB: https://graphdb.ontotext.com/

3. PostgreSQL. (2023, February 9). PostgreSQL: The World's Most Advanced Open Source Relational

Database. Retrieved from PostgreSQL: https://www.postgresql.org/

4. Understanding Semantic Web and Ontologies: Theory and Applications. (2010). Journal of Computing,

Volume 2, Issue 6. Retrieved from https://arxiv.org/ftp/arxiv/papers/1006/1006.4567.pdf

5. Wikipedia. (2023, February 6). Graph database. Retrieved from Wikipedia:

https://en.wikipedia.org/wiki/Graph_database.

