
25. starptautiskā studentu zinātniski praktiskā konference

Cilvēks. Vide. Tehnoloģijas

 https://doi.org/10.17770/het2021.25.6779

49

JETPACK COMPOSE AND XML LAYOUT RENDERING

PERFORMANCE COMPARISON

JETPACK COMPOSE UN XML LIETOTĀJA SASKARNES IZVIETOJUMA

ATSPOGUĻOŠANAS ĀTRUMA SALĪDZINĀJUMS

Autors: Iļja FJODOROVS, e-pasts: ilja_latvia@mail.ru

Zinātniskā darba vadītājs: Dr.sc.ing., doc. Sergejs KODORS,

Rēzeknes Tehnoloģiju akadēmija,

Atbrīvošanas aleja 115, Rēzekne, Latvija

Abstract. The aim of the work is to find out the rendering performance of new Google Android user

interface framework “Jetpack Compose”. Author has built two applications for Android platform with

identical user interfaces: one uses classic approach with Kotlin + XML layout file, another application is

developed using Jetpack Compose. In the results, the performance comparison of each approach is

provided.

Keywords: Android, Jetpack Compose, user interface.

Introduction

The expectations around UI development have grown. Today, we can’t build an

application and meet the user’s needs without having a polished user interface including

animation and motion. These requirements are things that didn’t exist when the Android UI

toolkit was created.[1]

To address the technical challenges of creating a polished UI quickly and efficiently

Google Development Team have introduced Jetpack Compose, a modern UI toolkit that lets

developers write user interface for Android OS using Kotlin programming language.

One of the fundamental things that developers like is the separation of concerns, as it is a

well-known software design principle. Despite being well known, it is often difficult to grasp

whether or not this principle is being followed in practice. It can be helpful to think of this

principle in terms of “Coupling” and “Cohesion”.[2]

When we write code, we create modules that consist of multiple units. Thus, coupling is

the dependency among units in different modules and reflects the ways in which parts of one

module influence parts of other modules. Meanwhile, cohesion is relationship among units

within one module, it indicates how well the units are grouped in the module

(see Fig. 1).When maintainable software is developed, it is important to minimize coupling and

maximize cohesion[1].

Fig.1. Coupling and cohesion principles [1]

https://doi.org/10.17770/het2021.25.6779

50

An UI development using Kotlin+XML represents the coupling paradigm. In this case, a

code changes in one module require making changes in another. The coupling can often be

implicit, because changes appear to be entirely unrelated.

On the other hand, Kotlin+Jetpack Compose toolkit application represents cohesion,

because development is completed using the same language (Kotlin). In the result, the

dependencies, that were implicit, start to become more explicit.

Materials and methods

The experiment environment is presented in Table 1.

Table 1. Experiment environment

Host OS Windows 10 Home 20H2

IDE Android Studio Arctic Fox | 2020.3.1 Canary 14

Compose Version 1.0.0-beta04 | April 7, 2021

Emulator Version 30.4.5 (February 23, 2021)

Virtual Device Pixel 2 XL

OS on Virtual Device Android 10 | API 29

Virtual Device RAM 2Gb of 8Gb DDR4 on the system

Virtual Device Cores 2 cores of 4 (Intel i5-8265U)

Two Android applications with similar user interface were developed for the experiment.

The version with Kotlin+XML is depicted inFig.2, but the version based on application of

Kotlin+Jetpack Compose is depicted in Fig.3. User interface contains an image of Android OS

logo followed by a Lorem Ipsum paragraph. Style of text may vary, but it does not impact on

the experiment.

Fig.2. Test application with Kotlin+XML

51

Fig.3. Application with Jetpack Compose

The source code of both applications is provided in Fig.4 and Fig. 5, the variables start

and end record execution time to measure UI content preparation. Firstly, we save current time

in start variable, after that we place corresponding layout code, and immediately after that we

save current time in end variable. Now we can calculate the performance of each approach

subtracting the end time from start time.

Fig.4. Source code of application with Kotlin+XML

52

Fig.5. Source code of application with Kotlin+Jetpack Compose

Results

Measurements were completed 10 times for each application. Console outputs are

depicted in Fig.6 and Fig.7.

Fig.6. Measurement results of Kotlin+XML version

53

Fig.7. Measurement results of Kotlin+Jetpack version

Results of experiment are presented in Table 2.

Table 2. Experiments results

XML Compose

1 28 53

2 25 46

3 35 39

4 29 37

5 30 59

6 29 25

7 43 25

8 23 58

9 34 69

10 33 40

Min 23 25

Max 43 69

Average 30,9 45,1

% 100,00% 145,95%

d% 0,00% 45,95%

As can be seen in Table 2 average rendering time for XML is 30,9ms , and average

rendering time for Compose is 45,1ms. The increase in rendering time is 45,1 – 30,9 = 14,2ms,

or if we take XML time as 100% , we get a 45,95% rendering time increase for Compose

version.

Conclusions

Results show approximately 46% Jetpack Compose rendering time increase comparing

to XML layout file rendering. This fact can be explained by early development stage of the

Jetpack Compose (by april of 2021, version: beta04)[3], so we can’t really tell how it will

perform in the final release. Research could be repeated after Jetpack Compose stable release.

Summary

Darba autoram bija interese uzzināt cik ātri Google Android platformas jaunais Jetpack

Compose lietotāja saskarnes izstrādes rīks veic lietotāja saskarnes attēlošanu uz ekrāna

salīdzinājuma ar „klasisko” pieeju ar XML failiem.

54

Darba autors uzskata ka 46% ātruma samazinājums ir kompromiss kuru gala lietotājs

praktiski nepamanīs lietojot aplikāciju. Kā arī tā ir „cena kuru ir jāsamaksā” par aplikācijas

lietotāja saskarnes izstrādes atvieglošanu.

Darba autors vēlētos uzsvērt uzmanību ka testētais Jetpack Compose lietotāja saskarnes

izstrādes rīks ir izstrādes cikla „beta” stadijā. Tālākos izstrādes posmos var tik uzlabota

ātrdarbība.

Pēc Jetpack Compose stabilās versijas jeb 1.0 versijas publiskošanas pētījumu varētu

atkārtot.

Bibliography

1. Understanding Jetpack Compose https://medium.com/androiddevelopers/understanding-jetpack-compose-

part-1-of-2-ca316fe39050

2. Software Engineering | Coupling and Cohesionhttps://www.geeksforgeeks.org/software-engineering-

coupling-and-cohesion/

3. Announcing Jetpack Compose Beta!https://android-developers.googleblog.com/2021/02/announcing-

jetpack-compose-beta.html

https://medium.com/androiddevelopers/understanding-jetpack-compose-part-1-of-2-ca316fe39050/
https://medium.com/androiddevelopers/understanding-jetpack-compose-part-1-of-2-ca316fe39050/
https://www.geeksforgeeks.org/software-engineering-coupling-and-cohesion/
https://www.geeksforgeeks.org/software-engineering-coupling-and-cohesion/
https://android-developers.googleblog.com/2021/02/announcing-jetpack-compose-beta.html
https://android-developers.googleblog.com/2021/02/announcing-jetpack-compose-beta.html

