Physiological Aspects of Nitrogen Fertilizer Impact on Latvian Origin Cannabis Sativa L .
DOI:
https://doi.org/10.17770/etr2011vol2.986Keywords:
Cannabis sativa L., nitrogen fertilizer, chlorophyll content, chlorophyll a fluorescence, yieldAbstract
The aim of the present study was to evaluate nitrogen fertilizer impact on photosynthesis and yield of hemp, applying modern non-destructive methods. The main object of the investigation – hemp cultivar of Latvian origin ‘Pūriņi’. Laboratory and field experiments showed diverse effects of different nitrogen fertilizer doses on various parameters. Additional nitrogen fertilizer dose of 60 kg ha-1 is most effective as evaluated by chlorophyll content in hemp leaves and changes of chlorophyll a fluorescence parameters. Nitrogen fertilizer negatively affected fiber content in hemp stems, therefore while cultivating hemp only for fiber production use of nitrogen fertilizer should be reduced. According to the seed mass results, additional nitrogen fertilizer doses should be applied following the climatic conditions. In the vegetation period guided with higher rainfall levels, 60 kg of additional nitrogen fertilizer per hectare can be considered as optimal amount. In current investigation hempseed oil composition was not negatively affected by nitrogen fertilizer. Also significant difference between seed yield of N60 and N100 variants has not been observed. To avoid excessive nitrogen fertilizer usage, its negative impact on plant physiology and yield losses, we consider nitrogen fertilizer 60 kg ha-1 as additional fertilizer is optimal for hemp cultivar ‘Pūriņi’. yield.Downloads
References
Bagci E., Bruehl L., Aitzetmuller K., Altan Y. 2003. A chemotaxonomic approach to the fatty acid and tocochromanol content of Cannabis sativa L. (Cannabaceae). - Turkish Journal of Botany 27:141-147
Anwar F., Latif S., Ashraf M. 2006. Analytical characterization of hemp (Cannabis sativa) seed oil from different agro-ecological zones of Pakistan. - Journal of the American Oil Chemists‟ Society (JAOCS) 83:323-329
Bismarck A., Mishra S., Lampke T. 2005. Plant fibers as reinforcement for Green Composites. In: Mohanty A.K., Misra M., Drzal L.T. (Eds) Natural fibers, biopolymers, and biocomposites. CRC Press, Taylor and Francis Group, pp:39-108
Bavec F., Bavec M. 2007. Organic production and use of alternative crops. CRC Press, Taylor and Francis Group, 241 pp
Girard J.E. 2009. Principles of environmental chemistry, Second edition. Jones & Bartlett Publishers, 687 pp
Xu Z.Z., Zhou G.S. 2006. Nitrogen metabolism and photosynthesis in Leymus chinensis in response to long-term soil drought. - Journal of Plant Growth Regulation 25:252-266
Zhou X.J., Liang Y., Chen H., Shen S.H., Jing Y.X. 2006. Effects of rhizobia inoculation and nitrogen fertilization on photosynthetic physiology of soybean. - Photosynthetica 44:530-535
Schlemmer M.R., Francis D.D., Shanahan J.F., Schepers J.S. 2005. Remotely measuring chlorophyll content in corn leaves with differing nitrogen levels and realtive water content. - Agronomy Journal 97:106-112
Smith-Heisters S. 2008. Environmental costs of hemp prohibition in the United States. - Journal of Industrial Hemp 13:157-170
Anonymous. 2004. IENICA (Interactive European Network for Industrial Crops and their Applications) Agronomy Guide. Generic guidelines on the agronomy of selected industrial crops, pp:4-5
Driķis J. 2004. Kaņepes : Ruža A., Adamovičs A., Bankina B., Bērziņš A., Driķis J., Kārkliņš A., Kreišmane D., Kreita D., Turka I., Ruža E. 2004. Augkopība. Jelgava: Latvijas Lauksaimniecības Universitāte, 374 lpp
Mediavilla V., Jonquera M., Schmid-Slembrouck I., Soldati A. 1998. Decimal code for growth stages of hemp (Cannabis sativa L.). - Journal of the International Hemp Association 5:65,68-74
Elzebroek T., Wind K. 2008. Guide to cultivated plants. CAB International, Wallingford, UK, 540 pp
Foyer C.H., Ferrario-Mery S., Noctor G. 2001. Interactions between carbon and nitrogen metabolism. In: Lea P.J., Morot-Gaudry J.F. (Eds) Plant nitrogen. Springer, pp:237-254
Egesel C.O., Gul M.K., Kahriman F., Ozer I., Turk F. 2008. The effect of nitrogen fertilization on tocopherols in rapeseed genotypes. - European Food Research and Technology 227:871-880
Richardson D.A., Duigan P.S., Berlyn P.G. 2002. An evaluation of noninvasive methods to estimate foliar chlorophyll content. - New Phytologist 153:185-194
Netto A.T., Campostrini E., de Oliveira J.G., Bressan-Smith R.E. 2005. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD–502 readings in coffee leaves. - Scientia Horticulturae 104:199-209
Neufeld H.S., Chappelka A.H., Somers G.L., Burkey K.O., Davison A.W., Finkelstein P.L. 2006. Visible foliar injury caused by ozone alters the relationship between SPAD meter readings and chlorophyll concentrations in cutleaf coneflower. - Photosynthesis Research 87:281-286
Olivier M., Goffart J.P., Ledent J.F. 2006. Threshold value for chlorophyll meter as decision tool for nitrogen management of potato. - Agronomy Journal 98:496-506
Samsone I., Andersone U., Vikmane M., Ieviņa B., Pakarna G., Ievinsh G. 2007. Nondestructive methods in plant biology: an accurate measurement of chlorophyll content by a chlorophyll meter. - Acta Universitatis Latviensis 723:145-154
Zhang J., Blackmer A.M., Ellsworth J.W., Koehler K.J. 2008. Sensitivity of chlorophyll meters for diagnosing nitrogen deficiencies of corn in production agriculture. - Agronomy Journal 100:543-550
Scharf P.C., Brouder S.M., Hoeft R.G. 2006. Chlorophyll meter reading can predict nitrogen need and yield response of corn in the North-Central USA. - Agronomy Journal 98:655-665
Esfahani M., Abbasi H.R.A., Rabiei B., Kavousi M. 2008. Improvement of nitrogen management in rice paddy fields using chlorophyll meter (SPAD). - Paddy And Water Environment 6:181-188
Hassan M.S., Khair A., Haque M.M., Azad A.K., Hamid A. 2009. Genotypic variation in traditional rice varieties for chlorophyll content, SPAD value and nitrogen use efficiency. - Bangladesh Journal of Agricultural Research 34:505-515
Pinior A., Grunewaldt-Stocker G., Alten H., Strasser R.J. 2005. Mycorrhizal impact on drought stress tolerance of rose plants probed by chlorophyll a fluorescence, proline content and visual scoring. - Mycorrhiza 15:596-605
Skorzynska-Polit E., Baszynski T. 2000. Does Cd2+ use Ca2+ channels to penetrate into chloroplasts? – a preliminary study. - Acta Physiologiae Plantarum 22:171-178
Maxwell K., Johnson G.N. 2000. Chlorophyll fluorescence - a practical guide. - Journal of Experimental Botany 51:659-668
Wang R.Z. 2004. Photosynthetic pathways and life form type for native plant species from Hulunbeier Rangelands, Inner Mongolia, North China. - Photosynthetica 42:219-227
Bown H.E., Mason E.G., Clinton P.W., Watt M.S. 2009. Chlorophyll fluorescence responce of Pinus radiata clones to nitrogen and phosphorus supply. - Ciencia e Investigacion Agraria 36:451-464
Shi G.R., Cai Q.S., Liu Q.Q., Wu L. 2009. Salicylic acid-mediated alleviation of cadmium toxicity in hemp plants in relation to cadmium uptake, photosynthesis, and antioxidant enzymes. – Acta Physiologiae Plantarum 31:969-977
Linger P., Ostwald A., Haensler J. 2005. Cannabis sativa L. growing on heavy metal contaminated soil: growth, cadmium uptake and photosynthesis. - Biologia Plantarum 49:567-576
Verhoeven A.S., Demmig-Adams B., Adams W.W. 1997. Enhanced employment of the xanthophyll cycle and thermal energy dissipation in spinach exposed to high light and N stress. - Plant Physiology 113:817-824
Otronen M., Rosenlund H.M. 2001. Morphological asymmetry and chlorophyll fluorescence in Scots pine (Pinus sylvestris): responses to variation in soil moisture, nutrients and defoliation. - Annales Botanici Fennici 38:285-294