METHODS FOR MEASUREMENT OF PULSE PARAMETERS OF FIBER LASERS
DOI:
https://doi.org/10.17770/etr2024vol3.8185Keywords:
Frequency, Pulse duration, Fiber laser, Color marking, Measurement, Laser technology, Pulsed parametersAbstract
Fiber lasers play an increasingly pivotal role in numerous scientific and industrial domains, spanning from optical communications to medicine. Their utilization across various technological realms continues to surge, prompting the demand for novel physical methods and principles to precisely measure laser pulse parameters during technological investigations. This article provides an overview of contemporary techniques and approaches employed in measuring the parameters of laser pulses generated by fiber laser systems, with a focus on accurately determining pulse frequency and duration. Special attention is paid to the specific measurement of the relationships between frequency, average power, pulse energy and pulse power for a 20W fiber laser source used for laser color marking on stainless steel.
Downloads
References
M. Khorasani, at.al., On the role of process parameters on meltpool temperature and tensile properties of stainless steel 316L produced by powder bed fusion, Journal of Materials Research and Technology, Volume 12, 2021, p. 2438-2452, ISSN 2238-7854, doi.org/10.1016/j.jmrt.2021.04.043.
Q. Wang, F. Wang, C. Cai, at.al., The essential role of the microstructure and composition in the corrosion resistance of laser-decontaminated surfaces, Optics & Laser Technology, Volume 152, 2022, 108111, ISSN 0030-3992,doi.org/10.1016/j.optlastec.2022.108111.
W. Pacquentin, N. Caron, R. Oltra, Effect of microstructure and chemical composition on localized corrosion resistance of a AISI 304L stainless steel after nanopulsed-laser surface melting, Applied Surface Science, Volume 356, 2015, Pages 561-573, ISSN 0169-4332, https://doi.org/10.1016/j.apsusc.2015.08.015.
M. Stafe, at.al., Nanopulsed ablation rate of metals dependence on laser fluence and wavelength in atmospheric air, U.P.B. Sci. Bull., Series A, Vol. 70, Iss. 4, 2008, ISSN 1223-7027
Zhu, Q., Sun, W., Yoo, Y., Zhang, X., Hunter, N., Mao, A., ... & Lu, Y. (2023). Enhance corrosion resistance of 304 stainless steel using nanosecond pulsed laser surface processing. Surfaces and Interfaces, 42, 103479.
Kim, H., Lee, W. J., Farrell, A. C., Balgarkashi, A., & Huffaker, D. L. (2017). Telecom-wavelength bottom-up nanobeam lasers on silicon-on-insulator. Nano letters, 17(9), 5244-5250.
Gupta, S., Engin, D., Puffenberger, K., Litvinovich, S., Kimpel, F., & Utano, R. (2013, September). Fiber laser systems for space lasercom and remote sensing. In Nanophotonics and Macrophotonics for Space Environments VII (Vol. 8876, pp. 105-113). SPIE.
Cusumano, A., Falsini, B., Giardina, E., Cascella, R., Sebastiani, J., & Marshall, J. (2019). Doyne honeycomb retinal dystrophy–Functional improvement following subthreshold nanopulse laser treatment: A case report. Journal of Medical Case Reports, 13, 1-5.
Kim, I., Martins, R. J., Jang, J., Badloe, T., Khadir, S., Jung, H. Y., ... & Rho, J. (2021). Nanophotonics for light detection and ranging technology. Nature nanotechnology, 16(5), 508-524.
Chhablani, J., Roh, Y. J., Jobling, A. I., Fletcher, E. L., Lek, J. J., Bansal, P., ... & Luttrull, J. K. (2018). Restorative retinal laser therapy: Present state and future directions. Survey of ophthalmology, 63(3), 307-328.
Vaiano, P., Carotenuto, B., Pisco, M., Ricciardi, A., Quero, G., Consales, M., ... & Cusano, A. (2016). Lab on Fiber Technology for biological sensing applications. Laser & Photonics Reviews, 10(6), 922-961.
Zhang, L., Tang, Y., & Tong, L. (2020). Micro-/nanofiber optics: Merging photonics and material science on nanoscale for advanced sensing technology. Iscience, 23(1).
Georgi Iliev, Hristov H. “Modelling and Simulation of Electropneumatic Positioning System Including the Length of Pneumatic Lines” ENVIRONMENT. TECHNOLOGY. RESOURCES 14th International Scientific and Practical Conference. June 15-16, 2023, Rezekne Academy of Technologies, Rezekne, Latvia, Page 106-111 ISSN 1691-5402 Online IS. DOI 10.17770/etr2023vol3.7186
Otto, H.-J., Stutzki, F., Modsching, N., Jauregui, C., Limpert, J., and Tünnermann, A. (2014). 2 kW Average Power from a Pulsed Yb-Doped Rod-type Fiber Amplifier. Opt. Lett. 39, 6446–6449. doi:10.1364/OL.39.006446
Wei, H., Chen, K., Yang, Y., and Li, J. (2016). All-solid Very Large Mode Area Ytterbium-Doped Silica Microstructured Fiber Based on Accurate Control on Cladding index. Opt. Express 24, 8978–8987. doi:10.1364/OE.24.008978
Wang, L., He, D., Feng, S., Yu, C., Hu, L., Qiu, J., et al. (2014). Yb/Er Co-doped Phosphate All-Solid Single-Mode Photonic crystal Fiber. Sci. Rep. 4, 6139. doi:10.1038/srep06139
Lv, Y., Lou, S., Tang, Z., Liu, X., and Wang, X. (2020). Tunable C-Band and L-Band Multi-Wavelength Erbium-Doped Fiber Ring Laser Based on a Triple-Core Photonic crystal Fiber with Polarization-dependent Loss. Opt. Laser Tech. 128, 106269. doi:10.1016/j.optlastec.2020.106269
Elahi, P., Kalaycıoğlu, H., Li, H., Akçaalan, Ö., and Ilday, F. Ö. (2017). 175 Fs-Long Pulses from a High-Power Single-Mode Er-Doped Fiber Laser at 1550 Nm. Opt. Commun. 403, 381–384. doi:10.1016/j.optcom.2017.07.072
Stutzki, F., Gaida, C., Gebhardt, M., Jansen, F., Jauregui, C., Limpert, J., et al. (2015). Tm-based Fiber-Laser System with More Than 200 MW Peak Power. Opt. Lett. 40, 9–12. doi:10.1364/OL.40.000009
Lee, E., Sun, B., Sun, B., Luo, J., Singh, S., Choudhury, D., et al. (2020). Compact Pulsed Thulium-Doped Fiber Laser for Topographical Patterning of Hydrogels. Opto-Electronic Adv. 3, 190039. doi:10.29026/oea.2020.190039
S. Ali, K. A. S. Al-Khateeb and B. Bouzid, "Comparison of the effect structure on Ring and Linear Cavity Lasers of Er-Doped Optical Fibers," 2008 International Conference on Computer and Communication Engineering, Kuala Lumpur, Malaysia, 2008, pp. 546-549, doi: 10.1109/ICCCE.2008.4580663.
Luna Zhang, Fengping Yan, Ting Feng, Wenguo Han, Yan Bai, Zhuoya Bai, Dan Cheng, Hong Zhou, Yuping Suo, Wavelength-tunable thulium-doped fiber laser with sampled fiber Bragg gratings, Optics & Laser Technology, Volume 120, 2019, https://doi.org/10.1016/j.optlastec.2019.105707
Pulov D., P. Tsvyatkov “Optical Systems for Reducing the Divergence of Laser Beams”, in. Proceedings of the 14th International Scientific and Practical Conference Environment. Technology. Resources. Rezekne, Latvia, Volume 3, 339-343, 2023, Online ISSN 2256-070X. DOI: 10.17770/etr2023vol3.7217
Kokalarov, M., B. Sakakushev, S. Parvanov (2021). Generalized Methodology for Application of the Photogrammetric Method for Measurement in Heavy Engineering XXXI International Scientific Symposium Metrology and Metrology Assurance, , IV.3., doi: 10.1109/MMA52675.2021.9610966
G. Račiukaitis, M. Brikas, P. Gecys, B. Voisiat, M. Gedvilas, et al., Use of high repetition rate and high power lasers in microfabrication: how to keep the efficiency high? JLMN J. Laser Micro/Nanoeng., 4 (2009), pp. 186-191
Schille, J., Schneider, L. & Loeschner, U. Process optimization in high-average-power ultrashort pulse laser microfabrication: how laser process parameters influence efficiency, throughput and quality. Appl. Phys. A 120, 847–855 (2015). https://doi.org/10.1007/s00339-015-9352-4
J. Finger, C. Kalupka, M. Reininghaus, High power ultra-short pulse laser ablation of IN718 using high repetition rates, Journal of Materials Processing Technology, Volume 226, 2015, 221-22, https://doi.org/10.1016/j.jmatprotec.2015.07.014.
D.J. Kane; R. Trebino. Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating. IEEE Journal of Quantum Electronics (Volume: 29, Issue: 2, February 1993), DOI: 10.1109/3.199311.
Zhang, H., Fu, M., Chen, X., Qi, J., Yi, W., Zhang, Y., Zhang, Y., Xu, Y., Li, X. Highly precise timing alignment of multi-wavelength interleaved cavity-less pulse sources with FROG (2023) Optics Express, 31 (26), pp. 44515-44522. DOI: 10.1364/OE.505879
Dichev, D., I. Zhelezarov, R. Dicheva, D. Diakov, H. Nikolova, G. Cvetanov. Algorithm for estimation and correction of dynamic errors. 30th International Scientific Symposium "Metrology and Metrology Assurance 2020", September, 2020, Sozopol, Bulgaria. DOI: 10.1109/MMA49863.2020.9254261
Dichev, D., Koev, H., Bakalova, T., Louda, P. A Gyro-Free System for Measuring the Parameters of Moving Objects. Measurement Science Review, volume 14, issue 5, 2014, pp. 263-269. DOI: 10.2478/msr-2014-0036
Yamada, R., Yamamoto, etc., Correction: Derivation of 1.064 μm normal albedos on the C-type asteroid Ryugu from laser pulse intensity measurement of the Hayabusa2 LIDAR (Earth, Planets and Space, (2022), 74, 1, (166), 10.1186/s40623-022-01717-z) (2024) Earth, Planets and Space, 76 (1), art. no. 17, DOI: 10.1186/s40623-023-01949-7
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Lyubomir Lazov, Tsanko Karadzhov, Edmunds Teirumnieks, Antons Pacejs, Conyu Conev
This work is licensed under a Creative Commons Attribution 4.0 International License.