• Petar Tsvyatkov Faculty of Engineering, Technical University of Gabrovo
  • Emil Yankov Faculty of Engineering, Rezekne Academy of Tehnologies
  • Lyubomir Lazov Faculty of Engineering, Rezekne Academy of Tehnologies
  • Edmunds Teirumnieks Faculty of Engineering, Rezekne Academy of Tehnologies
  • Karlis Pīgožnis Faculty of Engineering, Rezekne Academy of Tehnologies



Carbon steel, Laser marking, Roughness, fiber laser, surface texturing


Laser marking with a nanosecond fiber laser is one of the most common ways to permanently mark various engineering materials. The roughness of the machined surface and its observation is essential to evaluate the impact on the contrast of the marking as well. Experimental studies of the roughness obtained as a result of the laser marking, were inspected using a 3D measuring laser microscope OLYMPUS LEXT OLS5100. Analysis of the graphical dependence of the roughness function on the four process parameters: laser power, frequency, speed of marking and step.



Download data is not yet available.


K. Rafiee, H. Naffakh-Moosavy and E. Tamjid, “The effect of laser frequency on roughness, microstructure, cell viability and attachment of Ti6Al4V”, Materials Science and Engineering: C, 2020, 109, 110637. doi:10.1016/j.msec.2020.110637

S. Shaikh, S. Kedia, D. Singh, M. Subramanian and S. Sinha, “Surface texturing of Ti6Al4V alloy using femtosecond laser for superior antibacterial performance.”, Journal of Laser Applications, 31(2), 02.2011, doi:10.2351/1.5081106

J. Walker, C. Murray, M. Nie, B. Cook, and Clare, “The effect of large-area pulsed electron beam melting on the corrosion and microstructure of a Ti6Al4V alloy”, Applied Surface Science, A. T. 2014, 311, 534–540, doi:10.1016/j.apsusc.2014.05.105

Лазер форум, „Промышленная лазерная маркировка и гравировка металлических и неметаллических изделий“, URL:, дата обращения: 13.02.2023

A. Lamikiz, J. Sánchez, López de Lacalle, D. del Pozo, and J. M. Etayo, “Surface Roughness Improvement Using Laser-Polishing Techniques.”, Materials Science Forum, 2006 526, 217–222, doi:10.4028/

D. Przestacki, and M. Jankowiak, “Surface roughness analysis after laser assisted machining of hard to cut materials”, Journal of Physics: Conference Series, 2014, 483, 012019, doi:10.1088/1742-6596/483/1/012019

Angelov, N., Numerical Experiments for the Study of the Influence of Wavelength in Laser Impact onto Metals and Alloys, ICEST 2013, 26-29 June 2013, Ohrid, Macedonia, pp. 603-606, 2013,

E. Ukar, A. Lamikiz, L. López de Lacalle, D. del Pozo and J.L. Arana, “Laser polishing of DIN 1.2379 tool steel with CO2 laser and high-power diode laser”, Int. J. Machine Tools Manuf, 2010, 50, 115–125.

A. Gisario, A. Boschetto, and F. Veniali, “Surface transformation of AISI 304 stainless steel by high power diode laser”, Optics and Lasers in Engineering, 2011, 49(1), 41–51, doi:10.1016/j.optlaseng.2010.09.01

T. Perry, D. Werschmoeller, X. Li, F. Pfefferkorn, N.Duffie, “The effect of laser pulse duration and feed rate on pulsed laser polishing of microfabricated nickel samples”, 2009, J. Manuf. Sci. Eng. 131, 030995–031002.

U. Bögli, A. Blatter, S. Pimenov, A. Smolin and V.I. Konov, “Smoothening of diamond films with an ArF laser”, Diamond Relat. Mater, 1992, 1, 782–788




How to Cite

P. Tsvyatkov, E. Yankov, L. Lazov, E. Teirumnieks, and K. Pīgožnis, “INVESTIGATION OF SURFACE ROUGHNESS OF CARBON STEEL MACHINED PARTS AFTER NANOSECOND FIBER LASER MARKING”, ETR, vol. 3, pp. 358–362, Jan. 2024, doi: 10.17770/etr2023vol3.7317.