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Abstract. In order to achieve the wide range of the robotic application it is necessary to provide iterative motions 

among points of the goals. For instance, in the industry mobile robots can replace any components between a 

storehouse and an assembly department. Ammunition replacement is widely used in military services. Working place 

is possible in ports, airports, waste site and etc. Mobile agents can be used for monitoring if it is necessary to observe 

control points in the secret place. The paper deals with path planning programme for mobile robots. The aim of the 

research paper is to analyse motion-planning algorithms that contain the design of modelling programme. The 

programme is needed as environment modelling to obtain the simulation data. The simulation data give the possibility 

to conduct the wide analyses for selected algorithm. Analysis means the simulation data interpretation and 

comparison with other data obtained using the motion-planning.  The results of the careful analysis were considered 

for optimal path planning algorithms. The experimental evidence was proposed to demonstrate the effectiveness of the 

algorithm for steady covered space. The results described in this work can be extended in a number of directions, and 

applied to other algorithms.  
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I  INTRODUCTION 

The article is connected to the travelling salesman 

problem (TSP), but with some exceptions and 

conditions. In the case when the TSP is envisaged the 

following approximate path planning algorithms are 

used [2, 3, 4]: 

 The closest neighbour algorithm; 

 Simulated Annealing (SA); 

 Genetic Algorithm (GA); 

 Ant colony optimization. 

The closest neighbour approach is the simplest and 

straightforward TSP one [10]. The way to this 

approach to always visit the closest city. The 

polynomial complexity of the approach is O(n
2
). The 

algorithm is relatively simple: 

1 – Choose a random city; 

2 – Find out the nearest city unvisited and visit it; 

3 – Are there any unvisited cities left? If yes, repeat 

step 2; 

4 – Return to the first city. 

SA is successfully used and adapted to get an 

approximate solutions for the TSP [10]. SA is 

basically a randomized local search algorithm similar 

to Tabu Search but do not allow path exchange that 

deteriorates the solution. The polynomial complexity 

of the approach is O(n
2
) accordingly. 

 

Fig. 1.  Pseudocode for SA  

The SA method [1, 5, 16] is widely used in applied 

science (Fig. 1). The well-known traveling salesman 

problem has effectively solved by means of this 

method. For instance, the arrangement of many circuit 

elements on a silicon substrate is considerably 

improved to reduce interference among the elements 

[15, 18]. 

GA conducts in a way similar to the nature [3]. A 

basic GA starts working with a randomly generated 

population of potential solution. The candidates are 

then mated to produce offspring and only some of 

them go through a mutating process. Each candidate 

has an optimal value demonstrating us how go it is. 

Choosing the most optimal candidates for mating and 

mutation the overall optimality of the candidate 

solutions increases. Using GA to the TSP involves 

implementing a crossover procedure, a measure of 

optimality and mutation as well. Optimality of the 

solution is a length of the solution. 

Ant colony optimization is the algorithm that is 

inspired by the nature [9]. It is based on ant colony 
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moving behaviour. Good results can be achieved by 

means of the algorithm but not for complex problems. 

We managed to use SA algorithm rather 

successfully in our previous work [17] taking into 

account the specific side of this work (it will be 

discussed in detail further). Therefore, it is necessary 

to discuss some principles of SA realization in detail. 

In order to calculate the total path it is necessary to 

know the shortest route among all the cities. As we do 

not know the distance, we must apply one of the 

algorithms to define the shortest route among all the 

cities. It is Dijkstra's algorithm [14] that gives the 

possibility to get the shortest path tree. The 

polynomial complexity of the Dijkstra's algorithm is 

O(n
2
). 

II   GOALS 

The aim of the research paper is to analyze motion-

planning algorithms that contain the design of 

modelling programme. The programme is needed as 

environment modelling to obtain the simulation data. 

The simulation data give the possibility to conduct the 

wide analyses for selected algorithm. Analysis means 

the simulation data interpretation and comparison with 

other data obtained using the motion-planning. 

The use in practice and the necessity of it is greatly 

connected to optimal algorithm and methodological 

work out for autonomous agents that move in the 

space and are able to plan route on their own [6, 7, 8, 

11, 12, 13]. One of such agent-samples exiting in our 

everyday life is autonomous vacuum cleaner. 

Autonomous vacuum cleaners do not usually use the 

motion-planning algorithm. They are based on some 

simple algorithms, for example cleaning in a spiral, 

crossing the premises avoiding the walls and their 

moving is casual after touching the walls. The 

philosophy of this design was offered by the scientists 

of Massachusetts Institute of Technology. Agents 

must behave as insects having primitive controlling 

devices in accordance to the environment.  As a result, 

though an autonomous vacuum cleaner is very 

effective in cleaning premises, it is required much 

more time as compared with work made by a human. 

There is a drawback, the autonomous vacuum cleans 

some spaces many times but other spaces only once. 

The use of motion-planning algorithms can raise the 

effectiveness of an autonomous vacuum cleaner.  

III  ASSUMPTIONS 

In order to fulfill the aim of the research paper the 

following conditions are introduced for: 

 premises where an object moves; 

 robot (or object) moves around the premises; 

 path the robot moves on in the premises. 

The premises are presented as two-dimensional plane. 

The plane of premises is equally divided into the cells. 

The cell dimensions are equal to agent dimension that 

moves in the premises. The space can be represented 

as a graph with two kinds of edges (see Fig. 2).  

Horizontal and vertical edges are marked with 

unbroken lines they are of similar length, but others 

are longer and marked with dash lines. It is linked 

with agent movement possibilities.  

 

Fig. 2.  The example of the graph and 3 x 3 space  

The object moves only one cell forward and back 

i.e. during one motion the object can move to the one 

cell from empty eight ones (eight cells around one 

cell) paying attention to that cell is not occupied by 

the obstacle but if it is occupied, the graph will not 

have the relevant vertex (see Fig. 3).  

 

Fig. 3.  The example of agent’s motion (where vi,j is relevant 

vertex)  

As opposed to classical TSP we take a number of 

additional rules and it means that the agent can cross 

the one the same cell several times in succession (it 

must cross any cell one time obligatory). Thus, the 

agent’s initial vertex does not coincide with its final 

vertex of total route. 

In this research paper both algorithms were 

compared practically using and combining different 

placement of obstacles in the unchangeable two-

dimensional space. All the results were obtained on 

one and the same computer (2.66 GHz processor and 

2GB RAM), operating systems (Ubuntu 12.04.1 LST 

Linux were used). The following information was 

collected about: 

 the number of covering for each cell; 

 the time which was necessary for both 

algorithms to plan the route. 

The given illustrations (see Fig. 4) show coverage 

density (it is an example that was obtained in our 

previous work [17]).  
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Fig. 4.  Density scale (white - uncovered; black - covered the 

most) 

 

Fig. 5.  Coverage density for the space without obstacles for SA 

 

Fig. 6.  Coverage density with the obstacle consisting of 64 cells 

(the obstacle is in the middle of the premises) for SA 

 

Fig. 7.  Coverage density with the obstacle consisting of 144 

cells (the obstacle is in the middle of the premises) for SA 

 

Fig. 8.  Coverage density with the 12 random obstacles for SA 

 

Fig. 9.  Coverage density with another set of the 12 random 

obstacles for SA 
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Fig. 10.  Coverage density with the obstacle consisting of 12 cells 

(the obstacle is in the middle of the premises) for SA 

 

Fig. 11.  Coverage density with the obstacle consisting of 12 cells 

for SA 

The density scale (see Fig. 4) is the same for all 

coverage densities. Coverage density shows how often 

the robot covers each cell. 

IV  RESULTS 

Taking into account the fact that the distance among 

all the vertexes (cities) are unknown in the beginning, 

it is necessary to define the shortest paths among those 

vertexes mentioned above. Dijkstra's algorithm can be 

used but increasing the measures of the premises, the 

time is proportionally increases accordingly that is 

necessary for evaluating path tree. Therefore, it is 

needed to simplify the calculation of the shortest path, 

which is possible, provided the peculiarities and 

nuances of the task are taken into consideration. In 

addition, the empty premises should be observed. If all 

the mentioned above remains valid, the simple 

algorithm can be worked out to define the shortest 

paths. 

Let us consider the agent’s general moving paths. If 

there are no vertexes between the current initial and 

goal vertexes, the agent can move only to eight 

possible positions (cells) depending on goal vertex 

(see Fig. 3). Admitting that first vertex index i defines 

the vertical position and the second vertex j defines 

the horizontal position we can draw a line either 

horizontally or vertically. And one of the vertexes will 

have the index with common value (see Fig. 12).  

 

Fig. 12.  The example of agent moving horizontally (where i 

index value is common for both vertexes)  

Another situation can be seen if the current initial 

and goal vertexes are neither on the horizontal nor 

vertical lines (see Fig. 13-15).  

 

Fig. 13.  Three examples of agent moving (where A, B and C are 

sections among the vertexes): agent moves from v0,2 to v3,0 crossing 

v1,2 
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Fig. 14.  Three examples of agent moving (where A, B and C are 
sections among the vertexes): agent moves from v0,2 to v4,0 crossing 

v2,2 

 

Fig. 15.  Three examples of agent moving (where A, B and C are 

sections among the vertexes agent moves from v0,3 to v4,0 crossing 

v1,3) 

All cases of Fig. 13-15 have common 

characteristics that unites them. The shortest path from 

initial vertex to goal vertex is section C but for the 

agent this path is unavailable because of current task 

conditions and peculiarities. These cases can be 

described by the right-angled triangle where C is a 

side of the triangle. In addition, side B is longer than 

side A. One of the shortest paths among the relevant 

(corresponding) vertexes: 

 the agent moves along the longest  side B of the 

right-angled triangle until the gap between the 

covered path and side B is equal to side A; 

 if gap between the covered path and side B is 

equal to side A, then the agent moves along the 

angle allowed (along the section D) to the goal 

vertex (let us mark that this action corresponds to 

the case when side B is equal to side A i.e. the 

right-angled triangle is the isosceles triangle, too 

(see Fig. 13) in case initial vertex is v1,2, 4, (see 

Fig. 14) in case initial vertex is v2,2 and (see Fig. 

15) in case initial vertex is v1,3)).  

We can follow that the path is longer than optimal 

side C. And it can be calculated by the use of 

following formulae: L = B-A+2
0.5

*A, where L is the 

length of the path from initial vertex to goal vertex. 

By turn, C can be calculated from C = (A
2
+B

2
)

0.5
. It is 

possible to calculate how match percent L is longer 

than C (if L is equal to 100 %), then the final result is 

equal to P=((L-C)*100)/L. Our goal premises are 100 

x 100 cells. The value of P is reflected with contour 

line for the given premises depending on A and B (see 

Fig. 16).  

 

Fig. 16.  P value depending on B and A, if A > 1 and B > A 

It is possible to calculate maximum P value for 100 

x 100 cells big premises (see Fig. 16) that is equal to 

7.61 %. The method/algorithm mentioned was applied 

instead of Dijkstra's algorithm to calculate total path 

or covering of 100 x 100 cells big premises and it is 

obstacles free (see Fig. 17).  
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Fig. 17.  The density of covering for 100 x 100 cells big premises 
(it is obstacles free) 

Density of covering changes from 1 up to 40 (there 

are the cells which were covered only once and there 

are the cells covered maximum 40 times). Totally, the 

agent performed 192666 steps in order to cross each 

cell of the premises.   

V  CONCLUSION 

It can be concluded that the algorithm offered is 

rather simple and it replaced Dijkstra's algorithm 

effectively according to the task. The algorithm allows 

decreasing the time of calculation, which is necessary 

to define the shortest route among graph vertexes.  

The shortest path can be defined in a simple way 

(even in such cases mentioned in Fig. 13-15), 

provided that it is necessary to know the gap between 

the indexes of initial and goal vertexes. For instance, 

if initial vertex is vi1,j1 and goal vertex is vi2,j2, the first 

gap is ∆1=|i1-i2| and the second gap is ∆2=|j1-j2|. As to 

the next step, it is needed to calculate the biggest gap 

between both the gaps. The shortest path is equal to 

the biggest gap. For instance, Fig. 13 reflects the 

shortest path which occupies 4 cells, but in other cases 

(see Fig. 14-15) it is 5 cells big. 

It must be marked that total path can be a bit longer 

it is connected to the specific task which was 

envisaged in the chapters “Assumptions” and 

“Results” in detail. The worst case can be evaluated 

theoretically for the premises of 100 x 100 cells. If we 

take into consideration that the total route will consist 

of path pieces, which are longer than 7.61 % in 

comparison with C value (see Fig. 16), the total path 

will be longer than optimal 7.61 % (actually, it is the 

worst maximal variant. We must pay attention to the 

fact that SA provides only approximate solution).  

The algorithm can be successfully used e.g. in 

autonomous public transport restricted by means of 

rules, technical requirements in autonomous robots 

and military equipment. In addition, the algorithm can 

be used in various computer games where a path 

planning is done in dynamic environment.  

It is possible to conclude that the algorithm offered 

can be used in the different application areas not only 

for path planning of a robot.  
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