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Abstract. In the present paper a method of the generalized potential to planes is applied for the solution of the 

linearized according to Oseen of flat problem of hydrodynamics incompressible viscous fluid (IVF). Generalized 

potential simple layer containing McDonald function serves kernel for generalized potential to planes. 

For finding of an unknown density of the potential simple layer is received linear integral equation, containing 

double integral from curvilinear integral along border of the streamlined area. 

Sharing the pressure is in turn defined by potential simple layer with density of the potential, determined by linear 

integral equation, hanging from solution specified above integral equation. The offered method of the successive 

iterations, allowing elaborate the solution of the problem before achievement given to accuracy. 

As example of exhibit to theories is considered solution of the problem theory of hydrodynamic greasing  
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I 

Consider problem of a flow of a contour l  uniform 

flow (IVF) );( yx uuu


. Choose the Cartesian system 

coordinates (ХОУ) with the centre O into domain D, 

bounded by contour l (Fig. 1.). 

 

Fig. 1. 

Navier – Stokes equations (NS) of flat problem 

(IVF) 
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Introduce non-dimensional variables  
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Equation (1) and conditions (2) are written in  non-

dimensional variables (3)  
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According to Oseen [1-3, 6-9, 12] execute 

linearization of the relation (4)  
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Introduce stream function   
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And rewrite (6), (7) in form of the generalized 

Helmholtz equation [4] 
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By supposing, that   
  

 
  

and                   (10) 

obtain canonical form for (8) 
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McDonald function is a solution of the equation (11). 

This solution must depend that r only and 0lim 


, if

0r . Therefore, 
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Integral presentation of the solution of the linear 

equation (8) has form 
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)p(  - unknown density of the potential (13). 

If     , McDonald function has log feature 

         
 

 
       (14) 

but if     , 

       
 

  
      

 

 
 . (15) 

Therefore, expression (13) is generalized potential 

of the type of the potential simple layer. [10] 

Now write formal solution of the Poisson equation 

(9) 
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By applying (15), (13) obtain         

Boundary conditions (5) for velocity will be rest 

satisfied if  

           (18) 
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Now assume that      (a solution of the linear 

integral equation (19), (13) relatively density) can be 

expanded   in Fourier polynomial  

                         
    (20) 

  – polar angle, 

x=x( ), y=y( ) – equations for contour  l,         . 

Substituting (20) into (13), (16), (19),  obtain 

                         
     (21) 

Where 
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                                  . (22) 

In order to find  mAk  and  mBk   break        
on (2n+1) parts (on number of required coefficients) 

arbitrarily, for example, points 

   
  

    
              .  (23) 

Calculating  ikA  and  ikB  , then setting up 

them into (21) and (19), get system of the linear 

algebraic equations relative  ikA   and  ikB   

solving which find stream function   (21), density of 

the potential (20), a rotor of velocity  (13) and a field 

of velocities (7). 

Calculating div from both parts (6) of that α = 

const, β = const, and div  =0, obtain  

      (24) 

Multiplying (6) scalar by a vector ),;( yx nnn which 

is normal to l, write down 

   

  
 
 
          (25) 

                               
 
     (26) 

The solution of an external regional task of 

Neumann (24), (26) looks  

P(m)=P0+
 

 
    

 

   
         

, (27) 

Where density of potential (27) satisfies to 

Fredholm`s linear integrated equation of the second 

kind. 

       
      

   

 

 
            . (28) 

   - angle between the normal to  l at P and rmp.  

Solving (28), (29), find the pressure distribution 

(27). 
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II 

The resulting solution gives zero approximation of 

the considered problem in the Oseen approximation. 

For his "improvement" write the resulting field of 

velocities in the form [5] 

      
       

  
 
   ,       

       

  
 
   , 

           (1) 

      –  known functions. 

Linearize the equation (1.4) by (1) and then look for 

its solution in the form of 
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Collecting in (3) the terms of the same powers r,  

obtain the equation for the decomposition (2). It 

should be noted that    already known (1.13). The 

equation for      is   
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Consequently, 
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Solving the Poisson  

,11     (7) 

 finding 

   
 

 
    

 

   
           , (8) 

and boundary condition 

      . (9) 

Since *D  is arbitrary domain (l – anyone sufficiently 

smooth contour), then from (8) and (9) that      
     

       
 

                 
   

 

     
 

   
            

   
  (10) 

Thus, obtain a linear integral equation of the first 

kind of Fredholm type 

Solving equation (10), obtain (6), (8) and 

  
   

 
   

  
   

   
  

   

  
 .  (11) 

Furthermore, assuming 

      
       

  
 
   ,  (12) 

where          is known from (1.27),  finding 

        in the form of 

   
 

 
      
 

        ; 

        
      

   

 

 
              . (13) 

Expression       contains already known 

functions    ,       and their multiplies. 

III 

In a case when the field of velocities and pressures 

(IVF) is considered in bounded domain (for example, 

in a problem of movement (IVF) in the area due to the 

motion of part of the boundary of this domain 

(cavity)) solution procedure considered in sections (1, 

2) can be inapplicable.  

For example, consider solution of the well-known 

problem of theory of hydrodynamic greasing [4], 

when the motion (IVF)  is investigated in the area 

between the two circles of radius R1  and R2 off-center 

due to the rotation of the smaller circle with a given 

angular velocity ω. (Fig.2.) 

Introduce polar coordinates (r, θ)  with the center 

О1. The equation of the rotating circle is r=R1,  the 

equation of the fixed circle r=R(θ)  is defined by 

Theorem cosines.  

                  
              (1) 

      ; 

  – angle between the      and the axis  Ох (if 

     , then       , if       then      
 ). Thus         ,              ,           

(2) 
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Fig. 2. 

In cylindrical coordinates generalized Helmholtz 

equation is 
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Now introduce the dimensionless variables:    
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,         

     and write 
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. 

Substituting     
 

 
         , linearize (6), that 

satisfy the continuity equation, and obtain   

  

  

  

  
     (8) 

With the substitution  

             (9) 

reduce (3.8) to the canonical form 
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Solution of equation (10), depending only on r is 

λ=C1r
γ+C2r

-γ  (11) 

By (7) choose  

λ=Cr-γ  (12) 

that allows us to write the integral representation of 

the solution (8): 
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l1 – circle radius  , l2 – circle radius R2.  

Usually, the section connecting contours of l1 and l2 

when area D round along its border is made becomes. 

If the contour of l1 manages counterclockwise,  l2 – on 

hour. For this reason there is a minus sign in (13) 

before integral along l2.  

Let's write down the solution Poisson's equation (5) 

in a form  
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Boundary conditions 

        
  ;         
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;           .  (15) 

    
 

 

  

  
,      

  

  
.  (16) 

give system of four linear integrated equations 

concerning density of potentials       ,      , 

     ,      . 

Rewrite conditions (15) and (16) in a standard form 
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Where  
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According to the theorem of sine,  find 

                , 

                      (20) 

From (18) follows that stream function  accepts 

constant values on circles     и r=R(θ). As Ψ is 

defined to within constant composed, can put  

             (21) 

 

From (17) and (19) find 

           .  (22) 

In other words, stream function  is the solution of 

the equation of Poisson (5) with boundary conditions 

   

  
 
   

 
 

 
, (Neumann's external task) (23) 

   

  
 
      

  , (Neumann's internal task) (24) 

and  conditions (21), (22). 

Solving these problems, get system of four linear 

integrated equations 
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 2   ln1    2    +  2 =0;   2; (26) 

           ;   (27) 
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In (25) and (26)   is defined according to (14). 

The solution of this system can be transformed to 

solution of  the system  8n+4  the linear algebraic 

equations if to look for density of potentials in the 

form of Fourier's polynomials as it was made in 

section 1.  

Rewrite the linearized  Navier – Stokes equations 

(NS)  

     
  

  
     

 

  

   

  
 

 

    
    

    
 

  

    

   
+ 

 
 

 

   

  
 

 

  

    

  
  

  

  
; 

 

 

  

  
  

 

 

   

  
 

    

    
 

  

    

    
 

 

   

  
 

 

  

    

  
 

  

  
. 

  (29) 

Calculating div grad(p), obtain the equation of 

Poisson in which the right part depends on the 

solution of the task gotten above 

    ;                
   

 
–                          (30) 

        
 

 
           ,              
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For (27), write down 

    
 

   
         

     
 

   
          

  

 2ln1    2    ;  (32) 

Functions      ,       are defined from the 

solution of the linear integrated equations similar (23), 

(24). 

The subsequent approximations can be found 

similar to the procedure described in section 2 if to put 

         
             

             
   ; 

        
   ;         

   ; as ε<<1, it is 

possible to assume that these decomposition have to 

tend quickly to achievement given to accuracy. 
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