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Abstract. In the present paper a method of the generalized potential to planes is applied for the solution of the
linearized according to Oseen of flat problem of hydrodynamics incompressible viscous fluid (IVF). Generalized
potential simple layer containing McDonald function serves kernel for generalized potential to planes.

For finding of an unknown density of the potential simple layer is received linear integral equation, containing
double integral from curvilinear integral along border of the streamlined area.

Sharing the pressure is in turn defined by potential simple layer with density of the potential, determined by linear
integral equation, hanging from solution specified above integral equation. The offered method of the successive
iterations, allowing elaborate the solution of the problem before achievement given to accuracy.

As example of exhibit to theories is considered solution of the problem theory of hydrodynamic greasing

Keywords - incompressible viscous fluid, flat problem of hydrodynamics, problem theory of hydrodynamic
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|
Consider problem of a flow of a contour | uniform
flow (IVF) d(u,;uy). Choose the Cartesian system
coordinates (XOVY) with the centre O into domain D,
bounded by contour 1 (Fig. 1.).

My

Fig. 1.

Navier — Stokes equations (NS) of flat problem
(IVF)

(VW =1/ p-Vp +1AV
divv =0, (1)

Boundary conditions

\7||:O,\7—>U, PPy, >0 _ /x2+y2 @)

Introduce non-dimensional variables

B =uv’; ;
u:,/uX2+uy2

=1 (a,ﬁ);a=7;[3=u7y (3)

p = pu’p*, ¥ =dri(x",y*) g =diam(D)

Equation (1) and conditions (2) are written in non-
dimensional variables (3)

Re(V%)?:—%p+A\7, divi=0 (4)
\7||:O,v—>U(a,ﬂ), p—p;, —>w; plzp—oz.(rg,)
ou
According to Oseen [1-3, 6-9, 12] execute
linearization of the relation (4)
Re(ﬁ?)? =—Vp+AV. (6)

Introduce stream function

o oy
vx=5,vy=—5. (7)

And rewrite (6), (7) in form of the generalized
Helmholtz equation [4]

an 20\ _ .
Re (“@"’Bg} =A Q; (8)

Q=-Api0 = (00,93 _roiv- ©

Re

By supposing, that y = -
and O = e¥(@+B¥) (%, y) (10)
obtain canonical form for (8)

A = yo (11)
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McDonald function is a solution of the equation (11).
This solution must depend that r only and lims =0, if
r — 0. Therefore,

0=Ko(r D Ko)=[ ™ -a0)/ & -1 (12)

Integral presentation of the solution of the linear
equation (8) has form

Qm) == [ &Ko 1) - (P) -l 3

Ump =a(Xpy _Xp)+ﬁ(ym - yp);
mp Z\/(Xm _Xp)2 +(ym - yp)2

u( p) - unknown density of the potential (13).
If » - 0, McDonald function has log feature

Ky(r) =1In (%) + &(r);(14)

butif r — oo,

Ky(r) = \[ere"" +e G) (15)

Therefore, expression (13) is generalized potential
of the type of the potential simple layer. [10]
Now write formal solution of the Poisson equation

9)

w(m) :%HD*Q(p) -In(1/rmq)- dS, +wo, (16)

Ay, = 0. 17)
By applying (15), (13) obtain Q - 0,7 — o
Boundary conditions (5) for velocity will be rest

satisfied if

Yo = ay — px. (18)

lﬂD*Q(p) -In(t/rmq)-dS ;| =(Ax-ay),.
T |

(19)

Now assume that u(m) (a solution of the linear
integral equation (19), (13) relatively density) can be
expanded in Fourier polynomial

n®) =

6 — polar angle,

r-o(axcoskd + bysink®). (20)

x=x(0), y=y(8) — equations for contour |, 8¢[0, 27].
Substituting (20) into (13), (16), (19), obtain
k=o(axAr(m) + b B (m)),

u(x) = (1)

Where

86

2m

1 1
i =3 o) st
D* 0

X JxZ(GQ) +52(8g)cos (8p)dby;

2

1 1
o= [ )os [ i
D* 0

(22)

X JxZ(GQ) +52(8,)sin(6g)db,-

In order to find A, (m) and By (m) break [0,2r]
on (2n+1) parts (on number of required coefficients)
arbitrarily, for example, points

21

+1

(=i, i=01,..,2n.

(23)

Calculating Ay (6;)and By (6;), then setting up
them into (21) and (19), get system of the linear
algebraic equations relative A (0;) and By (6;)
solving which find stream function (21), density of
the potential (20), a rotor of velocity (13) and a field
of velocities (7).

Calculating div from both parts (6) of that a =
const, B = const, and div#=0, obtain

Ap=20 (24)
Multiplying (6) scalar by a vector ﬁ(nx; ny,) which

is normal to I, write down

ap| _

6_n|l =0(x,y), (25)

O(x,y)|, = [AV - Re(ﬁﬁ)ﬁ”lﬂ, (26)

The solution of an external regional task of
Neumann (24), (26) looks

PM)=Pyr2g; In (1) x()dl,,

mp

@7)

Where density of potential (27) satisfies to
Fredholm’s linear integrated equation of the second
kind.

T (m) + "=y (p)dl, = (m), (28)
®mp- angle between the normal to | at P and rp,.

Solving (28), (29), find the pressure distribution
2.
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1 1 ay
11 )E ) _ ay ) )E ) _ a_xl (11)

The resulting solution gives zero approximation of
the considered problem in the Oseen approximation. Furthermore, assuming

For his "improvement" write the resulting field of
velocities in the form [5] P=P°+yM wl (12)

m <pk(xy) m Sk(xy) . o
=a+ 2= & =B+ Xk= K where P°(x,y) is known from (1.27), finding
P, (x,y) in the form of
r=,/x%+y2 1)
_ Py ==§ ey, (p)dly;

@k, 0 — known functions.

Linearize the equation (1.4) by (1) and then look for m Cos@myp _
. L + dl, =o
its solution in the form of mam) + = p 2Pl = ®;(m). (13)

Q ) .

0=, +Z7c":1r—ff ) Expression &;(m) contains already known

Re (a + Xkt %)%(Qo + Z;cn=1%) + (ﬁ +

A=1mOkrkdOViN+ k=1 1027 k= D10+ fe=17720247/(3)

Collecting in (3) the terms of the same powers r,
obtain the equation for the decomposition (2). It
should be noted that Q, already known (1.13). The
equation for Q, is

A, — Re (a0, + B7- ) = fi(6y); (4)
f1G,) = Re (@132 90 + 6155 20). 5)
Consequently,
=6 eV K, (yrmp)p, (p) dl, -
ff ,,zn( ) fi(P)dS,. (®)
Solving the Poisson
Ay =—Q, (7
finding
=2 [l In () 2 ®)dS,, (®)

and boundary condition

Y1l =0.(9)

Since p* is arbitrary domain (I — anyone sufficiently

smooth contour), then from (8) and (9) that Q,|, =
8‘[[

¢ eV‘ImP Ko(]/Tmp)ﬂl(p)dl |m€l -

[y tn () @), | (10)

Thus, obtain a linear integral equation of the first
kind of Fredholm type
Solving equation (10), obtain (6), (8) and

87

functions Q, , ¢4, ¥, and their multiplies.

In a case when the field of velocities and pressures
(IVF) is considered in bounded domain (for example,
in a problem of movement (I\VVF) in the area due to the
motion of part of the boundary of this domain
(cavity)) solution procedure considered in sections (1,
2) can be inapplicable.

For example, consider solution of the well-known
problem of theory of hydrodynamic greasing [4],
when the motion (IVF) is investigated in the area
between the two circles of radius R, and R, off-center
due to the rotation of the smaller circle with a given
angular velocity o. (Fig.2.)

Introduce polar coordinates (r, 6) with the center

O;. The equation of the rotating circle is r=R;, the
equation of the fixed circle r=R(0) is defined by
Theorem cosines.

R(8) = ecos(8 — @) +/RZ — e2sin2(0 — @) (1)

E = 0102;

¢ — angle between the 0,0, and the axis Ox (if
0 = ¢, thenr=R,+¢,if0=nm+¢@thenr=R, —
€). Thus M(r,0) € D,r € [R, — &, R, + €], 0¢€[0, 27]

)
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by

Fig. 2.

In cylindrical coordinates generalized Helmholtz
equation is

v, ‘;‘:+”_92_2_ vAQ; 3)
2 (r6,) +22=0. 4)
Ay =-Q. ®)

. . . . T
Now introduce the dimensionless variables: ™ = I

. Q . v

V= V= p= pw?R3p* and write
Re [v2 90 4 %o "“] AQ. (6)
ar
2 R
Re = a)R—Z, 6= R_l-
v 2
Substituting vy = %,v, = 0(7), linearize (6), that

satisfy the continuity equation, and obtain

Re 0Q

With the substitution
Q=e"A(r,0) )

reduce (3.8) to the canonical form

921, 104 | 1 9A? 2 Re
—+——+———V—/1=0,y=7

or2  ror r2002%2 12

(10)

Solution of equation (10), depending only on r is

A=Cyr"+Cor” (12)
By (7) choose
A=Cr (12)

that allows us to write the integral representation of
the solution (8):

a(m) = %fﬁ e’ (Om=0)r ¥ 1y (p)dl, —

5%

— 2§, e Om Tt (p)dly. (13)

Tinp = \/rmz + 12 — 21108 (6, — 6)

I, —circle radius 6, I, — circle radius R,.

Usually, the section connecting contours of I; and I,
when area D round along its border is made becomes.
If the contour of I; manages counterclockwise, 1, —on
hour. For this reason there is a minus sign in (13)
before integral along .

Let's write down the solution Poisson's equation (5)
in a form

Y(m)
1 1 _
= Ufu In <E) [ﬁl ey(em_ep)rm; w (p)dl,

—%j@ e (6m=0p)y, puz(p)dlp]xl(p)dSp]
2

++lj€ In(—=) v, ()l

T L rmp X1\p 14
1

—5512 In (@)xz(p)dlp]

(14)

Boundary conditions

Vrlmell =0; vrlmelz =0;
1- —
Valmell =5 velmelz =0. (15)
__iw o
Ur = r 06’ Ve = or (16)

give system of four linear integrated equations
concerning density of potentials  u,(m), u,(m),

x1(m), x,(m).
Rewrite conditions (15) and (16) in a standard form

o o

1

1.2z =0
onlyes = 5 onlyogey O (17)
v v
2% =0 = =0
otles = O arlhcpey = O (18)
Where
ow _ o v ow
= == +
onlpy=g ~or r=5" on r= R(G) ar S(
170¥08sin{r=R(6) (19)
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oy _lo¥ Lov _ la—wCOS( _ 19p _  10vg |, 0%vg , 1 8%vg  10vg 1 8%vy vy
0tly=s 1 00ly=s’ 0tlr=p@) Lroe re6  rae  ar2  r2962 ' r ar 126 r2’
I¥orsingr=~R(6) (29)

According to the theorem of sine, find

sin{ = &sin (60 — @) ,

cos{ = £,/1 — e2sin%(6 — ) (20)

From (18) follows that stream function accepts
constant values on circles r = § u r=R(0). As ¥ is
defined to within constant composed, can put

Ylr=r@) =0 (21)
From (17) and (19) find
Ylyos = —Ind. (22)

In other words, stream function is the solution of
the equation of Poisson (5) with boundary conditions

oY 1 ,
mlyes & (Neumann's external task) (23)
- =0,(N 's internal task 24
onlr=r(o) , (Neumann's internal task) (24)

and conditions (21), (22).
Solving these problems, get system of four linear
integrated equations

)@, -
(25)

a 1 a 1
I a(ln@)!)(p)db"p +6 a—r(l L

n
mp
229011 rmpy2 pdlp+ myl m=md,mel;

3 1 a 1
ffD E(ln@)ﬂ(p)dSp + gﬁll ;(ln@> xa(p)dl, —

RIonnl rmpypdip+zy2 m=0;mel2, (26)
Ylr=s = —Ins; @7)
1/J|r=R(9) =0. (28)

In (25) and (26)  is defined according to (14).

The solution of this system can be transformed to
solution of the system 8n+4 the linear algebraic
equations if to look for density of potentials in the
form of Fourier's polynomials as it was made in
section 1.

Rewrite the linearized Navier — Stokes equations

(NS)
O AR T L L
or r2 90 r? ar2 r2 9092
10vy  10%g _ vr.
r or r2 90 r2’
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Calculating div grad(p), obtain the equation of
Poisson in which the right part depends on the
solution of the task gotten above

— 2 P N
AP=f;f=17Av—Re(%—Qrotvo) (30)
— 1 - —

Vo = (0,;),v(vr, vg), Q = (0,0,Q)
| _p
on I ~oor 11’
o] _
on I -

_ 1on|
O = ar|,2 cos{ + ra6l,, sm(|l (31)
For (27), write down

1 1

I, (ln @) f()ds, + 9511 (ln @) . (p)dl, —
2 1IrmppZpdlp, (32)

Functions ¢;(m), ¢,(m) are defined from the
solution of the linear integrated equations similar (23),
(24).

The subsequent approximations can be found
similar to the procedure described in section 2 if to put

_ \'m k. _ \'m k. _\m k-
Vp = Yk=1 WkE" Vg = Y=o Zk€" 5 Q= Ximo We™;

Y=o e p = TRk’ as e<<l, it is
possible to assume that these decomposition have to
tend quickly to achievement given to accuracy.
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