Modeling the Hardening of Carbon Steels After Quenching and Tempering

Nikolay Tonchev
Bulgaria University of Transport
Technique and construction technologies in transport Faculty
Sofia, Bulgaria
tontchev@vtu.bg

Normunds Teirumnieks
Bulgaria University of Transport
Technique and construction technologies in transport Faculty
Sofia, Bulgaria
normunds.teirumnieks@gmail.com

Emil Yankov
University of Ruse „A. Kanchev”
Departments of Materials Science and Technology
Ruse, Bulgaria
eyankov@uni-ruse.bg

Abstract. In the paper, after an overview and defined tasks, a methodology is applied and a model is derived for establishing the dependence of hardness on carbon content, hardness after hardening and tempering temperature after hardening for the entire range of carbon steels from structural to tool steels. The research was based on eight steels and four tempering temperatures formed in a total of 32 combinations. First, one-dimensional dependences of hardness change on carbon content were derived for each annealing temperature, then accuracy was improved with a three-control parameter model. The derived model was examined and its theoretical maximum was corrected. The difference between the theoretical and the real logical maxima amounts to 17.44%. For all specified extremes, the heat treatment modes are defined.

Keywords: hardness, quenching, tempering, matematic modes, carbon steel, multifactorial analysis.

I. INTRODUCTION

Clarification and evaluation of the possibilities of different types of strengthening have always interested researchers not only because of the significant application of this effect, but also because of the complexity of the processes taking place in it. Whether superficial or volumetric, hardening is primarily evaluated by hardness. Modeling the hardness of steels depending on the chemical composition, from the point of view of the physics of metals, is generally a difficult to formulate and unsolved task. The problem is that mechanical hardness at the atomic level is based on electrostatics and elastic shear, which can be generalized only for single-phase annealed alloys, and consequently only semi-empirical dependences can be obtained. Such an approach is used in [1], [2], [3], [4], [5], [6], [7] and [8] where, after adaptation, the interaction between dislocations and alloying elements is included. This interaction has been applied to eight two-component and three three-component alloys. In the cited research, a discrepancy between two of the main equations was found, and it was necessary to correct them with certain coefficients.

Simulation of the hardness is done because of the cooling rate during hardening of the steels. In such studies, the change in the temperature field is simulated by analyzing the phase transformation kinetics and modifying the hardness calculation model: [9], [10], [11]. In the cited research, when comparing the simulation results and the experimentally measured values, a good match between them was found. Very often, simulations are related to approximation from stiffness data, which can also be done by modeling with artificial neural networks with multilayer topology. An example of this is [12] where the relationship between phase composition and hardness of high entropy alloys (HEA) is investigated. Chemical composition was used as a set of input characteristics. In prediction, the neural network was trained with 775 experimental samples with a prediction accuracy of 93.4%. Despite the unprecedentedly large data set, for stiffness the model showed an average regression value of 0.88, and most of the predicted values that these authors indicate [13], are within the margin of error of 20%. Again by artificial neural network in [14] a prediction of the effect of chemical composition and tensile properties on both the impact strength and hardness of microalloyed steels intended for pipe manufacture was made. Such research requires, as noted, a larger number of observations, in the case of 104. Nevertheless, the role of the individual alloying elements is addressed implicitly, only through a single variable – “carbon equivalent based on the Ito-Bessyo equation (CEPcm)”, as well as the “yield strength (YS)”, the tensile properties. “Ultimate tensile strength (UTS)” and “elongation (El)” are considered together as input parameters of the networks, while Vickers microhardness...
with applied load and Charpy impact energy are taken as outputs of the constructed models. Such generalizations will require the need for additional calculations with certain approximations. Without implicit forms for the properties and additional calculations, using a Russian database, six numerical author approaches are developed in [15], where, in addition to artificial neural networks and a carbon equivalent approach for small databases, a polynomial regression approximation is also applied. The research is done for seven control parameters of low-alloy steels with regression approximation is also applied. The research object and this significantly affects the accuracy of the obtained decision.

2.2. The approach (from empirical, automated to the use of artificial intelligence) and the sample are related to the approach to be applied.

2.3. A limited number of investigations have been devoted to the polynomial regression approximation, for which there is no research on modeling the hardness of the quenching mode after quenching (alloy quenched and tempered steel) considering the change of hardness after quenching and the chemical composition of the steel, expressed by the carbon content.

2.4. In widely available tools such as Excel and in the literature, solutions to assist the researcher in making decisions with more than 2 control parameters are absent. Based on the conclusions drawn, the purpose and tasks of the research were formulated.

In the available literature, the change of the hardening after quenching and tempering (quenched and tempered steel) depending on the carbon content has been numerically confirmed, Table 1. This trend for seven carbon compositions (8 steels) and 4 tempering temperatures is plotted in Fig. 1.
III. ANALYSIS OF RESULTS

From the visualization of the data, all postulates known from the theory are confirmed:

- The carbon content has a significant influence on the hardening and the tendency to increase the hardening is maintained as a similarity among the investigated tempering temperatures.
- As the tempering temperature increases, the hardening decreases, and at 180 °C tempering it is negligible, applied to remove internal stresses for tools, while at 500 °C tempering it is applied to improve the grain structure, increasing the strength of blow.
- Based on the experimental data presented in Fig. 1 using the widely spread Excel, relationships predicting the unexamined carbon content at a specific retort temperature are derived. The results of this modeling are presented in Table 2.

Models from the polynomial regression approximation of hardness from the carbon state are plotted in natural units, along the abscissa axis in Fig. 1; the peculiarity of these models is the relatively low coefficient of multiple correlation for the models describing the return. Sufficient experimental data are available through which the accuracy of the modeling can be improved. One of these possibilities is by using the coded values from Table 1.

The disadvantage of this kind of representation is the low dimensionality of the modeling; for this reason, it does not comprehensively cover all examined indicators that are controlled. To overcome this shortcoming, the aim of the research is formulated: by means of modeling, the influence of the change in composition and the tempering temperature on the hardening of carbon steels after hardening heat treatment can be identified. Quenching and tempering (Q&T alloy quenched and tempered steel) is a combined heat treatment process to achieve maximal hardness with a certain strength and ductility. The goal of the research is to develop a mathematical model for the quenching and tempering process for the entire range of carbon steels – both structural and tool.

The results of the experiment are used to obtain the mathematical model of the examined process. A mathematical model is a system of mathematical relationships that describe the process or phenomenon under research. When planning an experiment, a mathematical model is often understood as an equation that relates an optimization parameter to factors. This equation is also called the response function. For the data from Table 1, in coded form, the model for the hardness depending on the carbon content of the steel \(X_1\) and the tempering temperature \(X_2\) is derived.

\[
\begin{align*}
HRC &= 47.9658 + 6.80107X_1 + 2.60967X_2 \\
&- 9.54842X_1X_2 - 0.149884X_1^2 + 7.06309X_2^2 + 0.850104X_1X_2 + 1.79414X_2^2
\end{align*}
\]

Polynomial regression analysis was used as the algorithm to express the model, and the programming language – Authoring Decision Support System was used to interpret the model results. The model data, which are the predicted stiifth values, were validated using an F-test combined with mean, correlation coefficient, and standard error analyses. The finding of improvement in accuracy at coded values for which the model was derived actually occurred with all control parameters considered together. The multiple correlation coefficient for the resulting model increased to \(R^2 = 0.9977\). The adequacy of the model is also proven by Fisher’s test, where the calculated value in this test is extremely much larger: \(538.3673 > > 2.3419 (p=0.05, 0.02)\) than the one determined in the table.

Analysis of the mutual influence of a set of three, four or more controlled parameters is difficult and requires an “advisor” developed as a system that takes into account:

- The exact complex interaction between parameters such as value and normalized percentage of the maximum. The interaction is visualized and can be justified iteratively by refining color intervals.
- A friendly oriented system, initially working with colors and upon reaching the desired solution for a maximum or minimum, the values of the control parameters and the investigated quantities are specified [18].
- The system is successfully applied to determine a complex of properties of a contradictory nature.

Using the cited decision support system, the following extremes of model (1) were obtained. Table 3 shows the minimal and maximal stiffness, as well as the values of the control parameters at which these values occur.
Based on the analysis, it was found that the theoretical maximum is unrealistic and it is 17.44 % greater than the actual logical one.

IV. CONCLUSION

Through the means of modeling in a new way, it has been proven that tool steels are always tempered at low temperatures in the range of 150 – 200 °C. This is proven by the derived model in which, after analysis, it was necessary to adjust its theoretical maximum. The difference between the theoretical and the real logical maxima amounts to 17.44 %. The analysis was performed by means of a system applied in varying the parameters of a technological process of retort for seven steels in order to identify the parameters of the process thickness.

IV. ACKNOWLEDGMENT

The authors gratefully acknowledge financial support by the European Regional Development Fund, Postdoctoral research aid Nr. 1.1.1.2/16/1/001 research application*Analysis of the parameters of the process of lasermarking of new industrial materials for high-techapplications, Nr. 1.1.1.2/VIAA/3/19/474*.

REFERENCES


[4] Loktionov, O.A., Fedotova, E.V., Kondrateva, O.E., Dolchinkov, N.T., Kuznetsov, N.S. Actual and design wind loads for overhead transmission lines in the Central European part of Russia, IOP Conference Series: Earth and Environmental ScienceThis link is disabled., 2023, 1281(1), 012050


<table>
<thead>
<tr>
<th>№</th>
<th>HRC</th>
<th>X1 C [%]</th>
<th>X2 HRC after quenching</th>
<th>X3 T [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Minimum – 22.6 [0 %]</td>
<td>0.31</td>
<td>44</td>
<td>500</td>
</tr>
<tr>
<td>2</td>
<td>Theoretical maximum – 68.51 [100 %]</td>
<td>1.195</td>
<td>44</td>
<td>180</td>
</tr>
<tr>
<td>3</td>
<td>Real logical maximum – 61.1 –[82.56 %]</td>
<td>1.195</td>
<td>63.5</td>
<td>180</td>
</tr>
</tbody>
</table>