Detailed microstructural studies of amorphous
Al-Ni-Si and Al-Ni-Si-Cu alloys during
crystallization

Yana Mourdjeva
Institute of Metal Science,
Equipment, and Technologies with
Hydro- and Aerodynamics Centre
“Acad. A. Balevski” at the Bulgarian
Academy of Sciences
Materials Testing and Analyses
Sofia, Bulgaria
yana@ims.bas.bg

Kateryna Valuiska
Institute of Metal Science,
Equipment, and Technologies with
Hydro- and Aerodynamics Centre
“Acad. A. Balevski” at the Bulgarian
Academy of Sciences
Materials Testing and Analyses
Sofia, Bulgaria
katerina@ims.bas.bg

Yoanna Kostova
Institute of Metal Science,
Equipment, and Technologies with
Hydro- and Aerodynamics Centre
“Acad. A. Balevski” at the Bulgarian
Academy of Sciences
Materials Testing and Analyses
Sofia, Bulgaria
y_kostova@ims.bas.bg

Vanya Dyakova
Institute of Metal Science,
Equipment, and Technologies with
Hydro- and Aerodynamics Centre
“Acad. A. Balevski” at the Bulgarian
Academy of Sciences
Materials Testing and Analyses
Sofia, Bulgaria
y_dyakova@ims.bas.bg

Abstract. Two types of rapidly solidified ribbons were
obtained from the systems Al-Ni-Si and Al-Ni-Si-Cu. By
XRD, TEM and DSC analysis the ribbons were proved to be
amorphous. By annealing at 350°C nanocrystalline alloys
were obtained. It was found that when the amorphous alloys
annealed at 190°C and 220°C, an unknown metastable
hexagonal phase is presented, which could not be identified
when annealing at 350°C is provided. Both studied alloys
Al₂Ni₃Si₁₀ and Al₂Ni₃Si₉Cu₉ show that when annealed at
190°C a residual amorphous phase is observed. It is located
mainly at the phase boundaries.

Keywords: amorphous, nanocrystalline, phase analysis.

I. INTRODUCTION

Amorphous and nanocrystalline alloys from Al-Ni-Si
ternary system are of great science interest because of their
unique combination of physical and mechanical properties.
Many researchers paid attention to the study of the structure
and properties of these materials [1] - [4]. However,
information on the phase diagram of Al-Ni-Si and alloys
based on it is limited [5], [6]. Al₁Ni and Al₁Ni₂ phases,
which have orthorhombic and trigonal crystal lattices
respectively, are known to exist in the range of increased
aluminium content of the Al-Ni-Si phase diagram.

The authors of [7] - [10] had investigate alloy from Al-
Ni-Si system and it was clarified that a metastable
hexagonal phase is formed in amorphous Al-Ni-Si alloys
upon annealing below a temperature of 200°C. This
hexagonal phase is with crystal lattice parameters a = 6.55-
6.59 Å, c = 3.83-3.86 Å. It disappears when the alloy is
subjected to further annealing above 300°C.

In our previous work [11], Al₂Ni₃Si₁₀ and
Al₂Ni₃Si₉Cu₉ alloys were investigated in the amorphous
state and after annealing at 350°C. In the course of the
investigation, it was found that the transformation of the
microstructure from amorphous to crystalline proceeded in
two steps and an unknown hexagonal phase was released,
which disappeared after annealing at 350°C. To identify
this metastable phase, further studies were conducted on
the fine structure of the alloys.
The aim of the study was to investigate the phase characteristics of the amorphous alloys Al\textsubscript{74}Ni\textsubscript{16}Si\textsubscript{10} and Al\textsubscript{74}Ni\textsubscript{15}Si\textsubscript{9}Cu\textsubscript{9} annealed at 190\textdegree C and 220\textdegree C and to determine the presence of the mentioned hexagonal phase at different annealing temperatures in the studied alloys.

II. MATERIALS AND METHODS

The investigated alloys Al\textsubscript{74}Ni\textsubscript{16}Si\textsubscript{10} and Al\textsubscript{74}Ni\textsubscript{15}Si\textsubscript{9}Cu\textsubscript{9} were synthesised from the metals Al, Ni, Si and Cu with a purity of 99.99\%. The ligatures and ribbon fabrication processes (Chill Block Melt Spinning method) were described in detail in our previous publication [12]. Annealing at 190\textdegree C, 220\textdegree C and 350\textdegree C was performed to obtain the crystalline structure and to study the types of phases.

The chemical composition of the ribbons was determined using a HIROX 5500 scanning electron microscope (SEM, HIROX Europe, Limonest, France) with a BRUCKER EXDS system (BRUCKER Co., Germany).

Bruker D8 Advance powder X-ray diffractometer (Karlsruhe, Germany) with Ni-filtered Cu Kα radiation and a LynxEye solid state position sensitive detector was used. The PDF-2 (2021) database of the International Centre for Data Diffraction (ICDD) and the DiffracPlusEVA software package v.4.0 (Bruker AXS 2010-2014, Karlsruhe, Germany) were used for phase analysis.

Differential Scanning Calorimetry (DSC) analysis was performed on a STA 449 F3 Jupiter calorimeter connected to a QMS 403 Aëolos Quadro mass spectrometer in an Ar environment. The protective Ar flow rate in the apparatus during the analysis was 30 mL s-1 and the purge Ar flow rate through the samples studied was 20 mL s-1. The heating rate was 20 K min-1.

HRTEM JEM 2100, (JEOL Ltd., Japan) with an acceleration voltage of 200 kV in SAED and HRTEM modes was used for microstructural observation of the obtained alloys.

III. RESULTS AND DISCUSSION

The base alloy composition of Al-Ni-Si is close to eutectic and is optimal for producing an amorphous alloy. Based on research to combine good GFA, mechanical properties and corrosion resistance [13]-[15], the amount of copper added was set at 2 at. %. Taking into account the chemical analysis provided [11] and based on the results obtained, the designations of the alloys are Al\textsubscript{74}Ni\textsubscript{16}Si\textsubscript{10} and Al\textsubscript{74}Ni\textsubscript{15}Si\textsubscript{9}Cu\textsubscript{9}.

The XRD data are given in Table 1. The microstructure of the rapidly solidified Al\textsubscript{74}Ni\textsubscript{16}Si\textsubscript{10} and Al\textsubscript{74}Ni\textsubscript{15}Si\textsubscript{9}Cu\textsubscript{2} ribbons is shown to be completely amorphous. The nature of the crystalline phases in the annealed samples was determined. From the phase composition data it can be seen that only three types of phases are present when annealed at 190\textdegree C - hexagonal metastable, Al and Al\textsubscript{3}Ni. The greatest variety of phases is recorded at annealing at 220\textdegree C. The hexagonal phase is present in the alloys at annealing temperatures of 190\textdegree C and 220\textdegree C. At higher annealing temperatures, the amount of hexagonal phase is significantly reduced compared to the lower annealing temperature and is completely absent at annealing at 350\textdegree C. The authors of [7] have shown that the hexagonal phase, which can be clearly determined, is formed from the amorphous phase in the sample annealed at 175\textdegree C. During annealing at higher temperatures the hexagonal phase is transformed into three other phases, namely fcc-Al, Si and Al\textsubscript{3}Ni phases.

<table>
<thead>
<tr>
<th>State of the alloy</th>
<th>Defined phases in Al\textsubscript{74}Ni\textsubscript{16}Si\textsubscript{10}</th>
<th>Defined phases in Al\textsubscript{74}Ni\textsubscript{15}Si\textsubscript{9}Cu\textsubscript{2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amorphous</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Annealed at 190\textdegree C</td>
<td>Al, Al\textsubscript{3}Ni, hexagonal</td>
<td>Al, Al\textsubscript{3}Ni, hexagonal</td>
</tr>
<tr>
<td>Annealed at 220\textdegree C</td>
<td>Al, Al\textsubscript{3}Ni, NiSi\textsubscript{2}, hexagonal, Ni\textsubscript{3}SiAl\textsubscript{5}, Al\textsubscript{3}Ni</td>
<td>Al, Al\textsubscript{3}Ni, NiSi\textsubscript{2}, hexagonal, Ni\textsubscript{3}SiAl\textsubscript{5}, Al\textsubscript{3}Ni</td>
</tr>
<tr>
<td>Annealed at 350\textdegree C</td>
<td>Al, Al\textsubscript{3}Ni, NiSi\textsubscript{2}</td>
<td>Al, Al\textsubscript{3}Ni, NiSi\textsubscript{2}, Cu\textsubscript{3}Ni, (Al,Cu)Ni</td>
</tr>
</tbody>
</table>

![Image of TEM observation](image-url)
Differential scanning calorimetry (DSC) studies were provided to determine the thermal resistance, transformation temperature intervals, phase transition temperatures and the crystallization mechanism in heating mode of the new Al74Ni16Si10 and Al74Ni16Si9Cu2 alloys. Fig. 3 shows the results from DSC analysis of the alloys in the amorphous (a) and crystalline state after annealing in an argon atmosphere at temperatures of 190°C (463K) (Fig. 3 (b)), 220°C (493K) (Fig. 3 (c)) and 350°C (623 K) (Fig. 3 (d)) respectively. According to [7], the first peak at DSC diagrams corresponds to the crystallization of the amorphous phase and the crystallization of the hexagonal phase is presented between the first and the second endothermic peaks.

The peaks proving the content of amorphous part in the specimens of Al74Ni16Si10 annealed at 190°C are smaller than those of the specimens of Al74Ni16Si9Cu2 annealed at the same temperature.

In [10] it was shown that the hexagonal phase has a specific outlines. In our TEM observations (fig. 4) a phase, whose morphology strongly resembles the one studied in [10], is observed in our structures.

Diffraction reflections correspond to a hexagonal close-packed structure, the reciprocal lattice plane (031), which may indicate the presence of a hexagonal phase. Diffraction rings can belong to different phases, fig.4 (b).
Yana Mourdjeva et al. Detailed microstructural studies of amorphous Al-Ni-Si and Al-Ni-Si-Cu alloys during crystallization

Fig. 4. TEM observations of Al$_74$Ni$_{15}$Si$_9$Cu$_2$ annealed at 190°C - (a) BF image; (b) SEAD pattern

IV. CONCLUSIONS

The crystallisation of the amorphous alloys Al$_{74}$Ni$_{16}$Si$_{10}$ and Al$_{74}$Ni$_{15}$Si$_{9}$Cu$_{9}$ obtained by the CBМS method during continuous heating in the DSC proceeds in two stages in the temperature ranges (452 ÷ 453) K and (529 ÷ 535) K. In the first stage, the amorphous phase is transformed into fcc-Al and hexagonal phase, and in the second stage, fcc-Si and orthorhombic Al$_3$Ni phase are formed from the hexagonal phase. These processes were demonstrated by DSC heating of the alloys at 463 K (190 oC) and 493 K (220 oC). TEM structural observations of both Al$_{74}$Ni$_{16}$Si$_{10}$ and Al$_{74}$Ni$_{15}$Si$_{9}$Cu$_{9}$ alloys annealed at 190°C showed a residual amorphous phase located at the phase boundaries of both the fcc-Al and hexagonal phases. It was found that after annealing at 350°C the transformation of the microstructure from amorphous to crystalline was complete and the metastable hexagonal phase was not observed.

ACKNOWLEDGEMENTS

This study is funded by the project “Study of the rheological and corrosion behavior of amorphous and nanocrystalline aluminum-based alloys”, Contract with BNSF №KP-06-H37/13 of 06 December 2019.

The authors are indebted to our colleagues Jordan Georgiev, PhD, Ivan Penkov, PhD, Georgi Stefanov, PhD (IMSETHAC-BAS) and prof. Daniela Kovacheva, PhD, ass. prof. Nikolay Marinkov, PhD (IC – BAS) for their help and support in the preparation and for the XRD and DSC analyzes of the alloys.

REFERENCES