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Abstract. In this paper, the research focus is on the 
longitudinal stability of a wheeled mobile robot, using a 
geometric similarity coefficient (this coefficient is defined in 
the paper). The research method used for calculations is 
D'Alembert's principle. The results represent the limit 
driving/braking forces and limit accelerations/ decelerations 
for a given geometric similarity coefficient, before the robot 
loses stability. 

Keywords: Degree of stability, longitudinal stability, stability 
coefficient, wheeled mobile robots 

I. INTRODUCTION 
In this paper, problems related to the stability of 

wheeled mobile robots during movement are studied. They 
refer to the methods of determining the stability limits of a 
design scheme and the comparison of stability between two 
or more design schemes. For example, moving the center 
of mass forward improves longitudinal stability during 
acceleration, but it results in reduced stability during 
deceleration. 

Usually, in similar studies, differential equations are 
used [1], [2], [4], [5] to represent the mathematical model. 
Instead, the D'Alembert's principle is used here, which 
considers an equilibrium system of forces, including 
inertial forces [6]; the accuracy of the calculations does not 
deteriorate. The wheels are assumed to contact the road at 
a point. Rolling friction forces are neglected. It is assumed 
that the motion occurs without slipping. It is also assumed 
that the robot body and its wheels are perfectly rigid, i.e. no 
deformations during movement. Lateral stability is not 
considered here. 

The aim of the present study is to propose a 
method/approach for comparison of stability (of 
permissible forces and accelerations) of different design 
schemes of wheeled mobile robots. 

To achieve the aim, we set ourselves the following 
tasks: 

• to determine the parameters affecting the stability of 
the robot; 

• the relationship between the robot's geometric 
parameters should be set quantitatively (with a 
number); 

• to demonstrate through numerical experiments that 
the method provides an adequate estimate of the 
stability of the robot; 

• to compare with examples the robot stability results 
by D'Alembert's method and by the proposed 
method. 

Our hypothesis is that if the combination of values of 
the geometric parameters of one design scheme and the 
combination of values of the geometric parameters of 
another design scheme give the same values of their 
corresponding stability coefficients, then their permissible 
longitudinal forces (in case the mass of the constructions is 
equal) and accelerations, after which a loss of stability 
occurs of these two design schemes, are equal. 

A criterion for loss of stability is the occurrence of a 
zero or negative value of the support reaction for any of the 
wheels of the robot. 

The article is organized as follows. 
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The second part contains an implementation and 
description of the mathematical model of the robot, as well 
as the notations used in the model. In the third part, specific 
values for the parameters of the robot, the constraints under 
which the experiments are carried out and the experimental 
results presented in a graphical form are given. In the last 
part, conclusions are made about the use of a stability 
coefficient and its relationship with limit forces and 
accelerations, after which a loss of stability occurs. 

II. METHODS AND MATERIALS 

A. Brief theory 
Fig. 1 shows a longitudinal projection of the studied 

type of robot, which has rear wheel drive and four wheel 
brakes. 

 

 

Fig. 1. Schematic of the robot in general view 

 

The notations used in the mathematical model and those 
of Fig. 2, are shown below: 

• 𝑂𝑂𝑥𝑥𝑥𝑥 – coordinate system related to the body of the 
robot; 

• 𝑚𝑚𝑐𝑐 – center of mass of the robot; 

• 𝐴𝐴𝑟𝑟  – position of the support points of the rear 
wheels; 

• 𝐴𝐴𝑓𝑓  – position of the support points of the front 
wheels; 

• 𝑙𝑙 [𝑚𝑚] – wheel base; 

• 𝑙𝑙𝑟𝑟  [𝑚𝑚] – distance along the x axis from the center of 
mass to the support points of the rear wheels; 

• 𝑙𝑙𝑓𝑓  [𝑚𝑚] – distance along the x axis from the center of 
mass to the support points of the front wheels; 

• 𝑧𝑧𝑚𝑚𝑐𝑐  [𝑚𝑚] – distance from the mass center to the road; 

• 𝑚𝑚 = 3 [𝑘𝑘𝑘𝑘] – mass of the robot; 

• 𝑘𝑘 = 9.807 [𝑚𝑚/𝑠𝑠2]  – average ground acceleration 
(in the general case, the gravitational acceleration is 
a parameter); 

• 𝑎𝑎 [𝑚𝑚/𝑠𝑠2] – acceleration of the robot; 

• 𝑎𝑎𝑑𝑑𝑟𝑟  [𝑚𝑚/𝑠𝑠2] – positive acceleration of the robot; 

• 𝑎𝑎𝑏𝑏𝑟𝑟  [𝑚𝑚/𝑠𝑠2] – deceleration of the robot; 

• 𝑎𝑎𝑝𝑝  [𝑚𝑚/𝑠𝑠2] – permissible acceleration of the robot; 

• 𝑎𝑎𝑑𝑑𝑟𝑟𝑝𝑝  [𝑚𝑚/𝑠𝑠2]  – permissible acceleration of the 
robot; 

• 𝑎𝑎𝑏𝑏𝑟𝑟𝑝𝑝 [𝑚𝑚/𝑠𝑠2]  – permissible  deceleration of the 
robot; 

• 𝐹𝐹𝑔𝑔 [𝑁𝑁] – weight; 

• 𝐹𝐹𝑑𝑑𝑟𝑟  [𝑁𝑁] – driving force; 

• 𝐹𝐹𝑏𝑏𝑟𝑟 [𝑁𝑁] – braking force; 

• 𝐹𝐹𝑑𝑑𝑟𝑟𝑝𝑝 [𝑁𝑁] – permissible  driving force; 

• 𝐹𝐹𝑏𝑏𝑟𝑟𝑝𝑝 [𝑁𝑁] – permissible  braking force; 

• 𝐹𝐹𝑖𝑖𝑖𝑖 [𝑁𝑁] – inertial force; 

• 𝐹𝐹𝑖𝑖𝑖𝑖𝑑𝑑𝑟𝑟  [𝑁𝑁] – inertial force during acceleration; 

• 𝐹𝐹𝑖𝑖𝑖𝑖𝑏𝑏𝑟𝑟 [𝑁𝑁] – inertial force during deceleration; 

• 𝐹𝐹𝑠𝑠𝑟𝑟 [𝑁𝑁] – support reaction at the rear wheels; 

• 𝐹𝐹𝑠𝑠𝑓𝑓 [𝑁𝑁] – support reaction at the front wheels; 

The mathematical model of the robot is built according 
to D'Alembert's principle, for which in this case it is 
necessary to compile a system of two moments and one 
projection equation according to the Fig. 2: 

 

�

∑𝑀𝑀𝐴𝐴𝑟𝑟𝑖𝑖
= 0

  ∑𝑀𝑀𝐴𝐴𝑓𝑓𝑖𝑖
= 0  

∑𝑥𝑥𝑖𝑖 = 0   
   (1) 

 
 

�
𝐹𝐹𝑔𝑔 𝑙𝑙𝑟𝑟 + 𝐹𝐹𝑖𝑖𝑖𝑖 𝑧𝑧𝑚𝑚𝑐𝑐 + 𝐹𝐹𝑠𝑠𝑓𝑓 𝑙𝑙 = 0
𝐹𝐹𝑔𝑔 𝑙𝑙𝑓𝑓 + 𝐹𝐹𝑖𝑖𝑖𝑖 𝑧𝑧𝑚𝑚𝑐𝑐 + 𝐹𝐹𝑠𝑠𝑟𝑟  𝑙𝑙 = 0

𝐹𝐹𝑡𝑡𝑟𝑟 + 𝐹𝐹𝑖𝑖𝑖𝑖 = 0
  (2) 

 
If the robot is equipped with the necessary sensors for 

reading the driving force and an actuator for supplying the 
required driving force 𝐹𝐹𝑑𝑑𝑟𝑟, i.e. if 𝐹𝐹𝑑𝑑𝑟𝑟 is a parameter, only 
the support reactions of the wheels remain unknown in the 
system. The remaining terms in the equations are either 
constants or parameters: 

𝐹𝐹𝑔𝑔 = 𝑚𝑚 𝑘𝑘   (3) 
 

𝑙𝑙 = 𝑥𝑥𝐴𝐴𝑓𝑓 − 𝑥𝑥𝐴𝐴𝑟𝑟   (4) 
The following dependence determining 𝐾𝐾𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐 

is: 

𝑙𝑙𝑟𝑟 = 1
3
𝑙𝑙;  𝑙𝑙𝑓𝑓 = 𝑙𝑙 − 𝑙𝑙𝑟𝑟; 𝑧𝑧𝑚𝑚𝑐𝑐 = 𝑙𝑙

6
  (5) 

For the support reactions, during acceleration: 

𝐹𝐹𝑠𝑠𝑓𝑓 = 𝐹𝐹𝑑𝑑𝑟𝑟 𝑥𝑥𝑚𝑚𝑐𝑐−𝑚𝑚 𝑔𝑔 𝑙𝑙𝑟𝑟
𝑙𝑙

   (6) 
 

𝐹𝐹𝑠𝑠𝑟𝑟 = 𝐹𝐹𝑑𝑑𝑟𝑟 𝑥𝑥𝑚𝑚𝑐𝑐+𝑚𝑚 𝑔𝑔 𝑙𝑙𝑓𝑓
𝑙𝑙

   (7) 

For the support reactions, at deceleration: 

𝐹𝐹𝑠𝑠𝑓𝑓 = 𝐹𝐹𝑏𝑏𝑟𝑟 𝑥𝑥𝑚𝑚𝑐𝑐+𝑚𝑚 𝑔𝑔 𝑙𝑙𝑟𝑟
𝑙𝑙

   (8) 

 
𝐹𝐹𝑠𝑠𝑟𝑟 =  𝑚𝑚 𝑔𝑔 𝑙𝑙𝑓𝑓−𝐹𝐹𝑏𝑏𝑟𝑟 𝑥𝑥𝑚𝑚𝑐𝑐

𝑙𝑙
   (9) 
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Fig. 2. Schematic of the robot with a coupled coordinate system and the acting forces (longitudinal projection) 

 

According to the selected loss of stability criterion, in 
order to find the permissible driving and braking forces, 
under acceleration/deceleration, we assume the support 
reactions to be zero in the following two equations: 

𝐹𝐹𝑑𝑑𝑟𝑟𝑝𝑝 =
𝑚𝑚 𝑔𝑔 𝑙𝑙𝑟𝑟−𝐹𝐹𝑠𝑠𝑓𝑓  𝑙𝑙

𝑥𝑥𝑚𝑚𝑐𝑐
   (10) 

 
𝐹𝐹𝑑𝑑𝑟𝑟𝑝𝑝 = 𝑚𝑚 𝑔𝑔 𝑙𝑙𝑓𝑓−𝐹𝐹𝑠𝑠𝑟𝑟𝑙𝑙

𝑥𝑥𝑚𝑚𝑐𝑐
   (11) 

Because 𝐹𝐹𝑑𝑑𝑟𝑟𝑝𝑝 = 𝑚𝑚𝑎𝑎𝑑𝑑𝑟𝑟𝑝𝑝; 𝐹𝐹𝑏𝑏𝑟𝑟𝑝𝑝 = 𝑚𝑚𝑎𝑎𝑏𝑏𝑟𝑟𝑝𝑝, then again for 
support reactions equal to zero: 

𝑎𝑎𝑑𝑑𝑟𝑟𝑝𝑝 =
𝑚𝑚 𝑔𝑔 𝑙𝑙𝑟𝑟−𝐹𝐹𝑠𝑠𝑓𝑓  𝑙𝑙

𝑥𝑥𝑚𝑚𝑐𝑐  𝑚𝑚
= 𝑔𝑔 𝑙𝑙𝑟𝑟

𝑥𝑥𝑚𝑚𝑐𝑐
−

𝐹𝐹𝑠𝑠𝑓𝑓  𝑙𝑙

𝑥𝑥𝑚𝑚𝑐𝑐  𝑚𝑚
 (12) 

 
𝑎𝑎𝑏𝑏𝑟𝑟𝑝𝑝 = 𝑚𝑚 𝑔𝑔 𝑙𝑙𝑓𝑓−𝐹𝐹𝑠𝑠𝑟𝑟 𝑙𝑙

𝑥𝑥𝑚𝑚𝑐𝑐  𝑚𝑚
= 𝑔𝑔 𝑙𝑙𝑓𝑓

𝑥𝑥𝑚𝑚𝑐𝑐
− 𝐹𝐹𝑠𝑠𝑟𝑟 𝑙𝑙

𝑥𝑥𝑚𝑚𝑐𝑐  𝑚𝑚
 (13) 

B. Implementation 
The experiments are conducted for acceleration and 

deceleration. 

The steps in performing the calculations are: 

• The values for the constants are defined. 

The ground acceleration 𝑘𝑘  and mass 𝑚𝑚  remain the 
same for all calculations. 

• Defining  𝐾𝐾𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑟𝑟 = 𝑥𝑥𝑚𝑚𝑐𝑐
𝑙𝑙𝑟𝑟

; 

• Defining  𝐾𝐾𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑓𝑓 = 𝑥𝑥𝑚𝑚𝑐𝑐
𝑙𝑙𝑓𝑓

; 

• Defining  𝐾𝐾𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏1 = 𝑥𝑥𝑚𝑚𝑐𝑐
𝑙𝑙

; 

• Defining  𝐾𝐾𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏2 = 𝑥𝑥𝑚𝑚𝑐𝑐
2

𝑙𝑙𝑟𝑟𝑙𝑙𝑓𝑓
; 

• Defining  𝐾𝐾𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏4 = 𝑥𝑥𝑚𝑚𝑐𝑐
4

𝑙𝑙𝑟𝑟2𝑙𝑙𝑓𝑓
2; 

• 𝐾𝐾𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏  when 𝑧𝑧𝑚𝑚𝑐𝑐 ∈ [0.05,0.20]; 𝑙𝑙 = 0.30; 

• 𝐾𝐾𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏  when 𝑧𝑧𝑚𝑚𝑐𝑐 ∈ [0.05,0.30]; 𝑙𝑙 = 0.60; 

• 𝐾𝐾𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏  when 𝑧𝑧𝑚𝑚𝑐𝑐 ∈ [0.05,0.60]; 𝑙𝑙 = 1.20; 

• 𝐾𝐾𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏  when 𝑙𝑙 ∈ [0.15,0.40] ; 𝑧𝑧𝑚𝑚𝑐𝑐 = 0.10  and 𝑙𝑙  is 
along 𝑂𝑂𝑥𝑥 axle; 

• 𝐾𝐾𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏  when 𝑙𝑙 ∈ [0.15,0.40] ; 𝑧𝑧𝑚𝑚𝑐𝑐 = 0.10  and 𝑙𝑙𝑟𝑟  is 
along 𝑂𝑂𝑥𝑥 axle; 

• 𝐾𝐾𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏  when 𝑙𝑙 ∈ [0.15,0.40] ; 𝑧𝑧𝑚𝑚𝑐𝑐 = 0.10  and 𝑙𝑙𝑓𝑓  is 
along 𝑂𝑂𝑥𝑥 axle; 

• The force of gravity is determined according to the 
values of the earth's acceleration and mass: 𝐹𝐹𝑔𝑔 =
𝑚𝑚𝑘𝑘. 

• For acceleration, the permissible driving force is 
calculated by the equation: 

𝐹𝐹𝑑𝑑𝑟𝑟𝑝𝑝 = 𝑚𝑚𝑘𝑘𝑙𝑙𝑟𝑟/𝑧𝑧𝑚𝑚𝑐𝑐. 
• For deceleration, the permissible braking force is 

calculated using the equation: 

𝐹𝐹𝑏𝑏𝑟𝑟𝑝𝑝 = 𝑚𝑚𝑘𝑘𝑙𝑙𝑓𝑓/𝑧𝑧𝑚𝑚𝑐𝑐. 
• The permissible acceleration is: 

 𝑎𝑎𝑑𝑑𝑟𝑟𝑝𝑝 = 𝑘𝑘𝑙𝑙𝑟𝑟/𝑧𝑧𝑚𝑚𝑐𝑐. 
• The permissible deceleration is: 

𝑎𝑎𝑏𝑏𝑟𝑟𝑝𝑝 = 𝑘𝑘𝑙𝑙𝑓𝑓/𝑧𝑧𝑚𝑚𝑐𝑐. 



Inga Lasenko et al. Thermal and Structural Properties of Succinite Reinforced PA6 Nanofibers 

150 

III. EXPERIMENTS AND RESULTS 

A. Subject of experiments 
Design scheme of a rear-wheel drive four-wheeled 

mobile robot with four wheel brakes is the subject of 
experiments. We assume that the robot is supplied with 
engine and brakes, which are capable to unbalance the 
robot during acceleration, respectively – deceleration. 

B. Constrains 
We accept the following restrictions: 
• resistance forces as a result of contact with the road, 

friction in the robot units, air flow, etc. are not taken 
into account; 

• the wheels contact the road at a point;   
• the movement is non-slip; 
• acting forces do not deform the robot units. 

C. Results 
The Octave 8.4.0 programming language was used to 

conduct the experiments. 

The experiments are carried out on a design scheme of 
a four-wheeled rear-wheel drive mobile robot. Five 
variants of 𝐾𝐾𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏  are selected. 𝐾𝐾𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑟𝑟  gives a 
unambiguous comparison in acceleration. 𝐾𝐾𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑓𝑓  gives a 
unambiguous comparison on deceleration. 𝐾𝐾𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏1  is 
suitable when comparing design schemes which a certain 
route has to be passed. According to the characteristics of 
the terrain and according to the braking and acceleration 
capabilities, this coefficient can help to select an optimal 
location of the center of mass. But it does not give an 
unambiguous comparison specifically for acceleration and 
deceleration. 𝐾𝐾𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏2 and 𝐾𝐾𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏4 are similar to 𝐾𝐾𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏1, but 
allow more strict control in design schemes with low 
stability due to their steeper graph, in the area of less 
stability. In other words, they can play the role of 
weighting coefficients in optimization tasks. 

Normally, the coefficient 𝐾𝐾𝑏𝑏𝑎𝑎𝑠𝑠𝑏𝑏  is chosen so that the 
closer its values are to zero, the greater the stability of the 
design scheme. In appropriate cases, such as when linear 
functions are required and we therefore want to free the 
denominator from variables, we can use the reciprocal, i.e. 
𝐾𝐾𝑏𝑏𝑎𝑎𝑠𝑠𝑏𝑏−1. Also, 𝐾𝐾𝑏𝑏𝑎𝑎𝑠𝑠𝑏𝑏−1 is more intuitive because its value 
increases along with the value of 𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑;  𝐹𝐹𝑏𝑏𝑑𝑑𝑑𝑑;  𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑; 𝑎𝑎𝑏𝑏𝑑𝑑𝑑𝑑 , 
but on the other hand, at 𝐾𝐾𝑏𝑏𝑎𝑎𝑠𝑠𝑏𝑏  the maximum degree of 
stability is when 𝐾𝐾𝑏𝑏𝑎𝑎𝑠𝑠𝑏𝑏 → 0, i.e. to a certain value from the 
number axis. 

The presence of some negative values of forces and 
accelerations in the results is due to their orientation 
relative to the coupled to the robot's body coordinate 
system. 

Following are some explanations about the 
experiments and their relevant graphs presented. 

a) Fig. 3, Fig. 4 and Fig. 5 illustrate the increase in 
𝐾𝐾𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏  values when the stability decreases (when the height 
of the mass center 𝑧𝑧𝑚𝑚𝑐𝑐  increases, the stability decreases). 

b) Conversely, in Fig. 6, Fig. 7 and Fig. 8, the values 
of 𝐾𝐾𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏  decrease as the stability increases (as the 

wheelbase 𝑙𝑙 increases, respectively 𝑙𝑙𝑟𝑟  and 𝑙𝑙𝑓𝑓, the stability 
increases). 

c) In Fig. 9 and Fig. 10 again the dependence of 
𝐾𝐾𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏  on the stability is given, but instead of indirectly, 
through the geometrical parameters of the dsign scheme, 
the permissible forces and accelerations are located 
directly along the 𝑂𝑂𝑥𝑥 axis.𝐾𝐾𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑓𝑓 is not applicable to 𝐹𝐹𝑑𝑑𝑟𝑟𝑝𝑝 
and 𝑎𝑎𝑑𝑑𝑟𝑟𝑝𝑝 ; 𝐾𝐾𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑟𝑟  is not applicable to 𝐹𝐹𝑏𝑏𝑟𝑟𝑝𝑝  and 𝑎𝑎𝑏𝑏𝑟𝑟𝑝𝑝 , so 
such graphs are not displayed. 

d) Fig. 11 and Fig. 12 show the permissible forces 
and accelerations for design schemes with different 
stability, which increases with increasing 𝑙𝑙 and decreases 
with increasing 𝑧𝑧𝑚𝑚𝑐𝑐 . This case can also be interpreted not 
as a comparison of different design schemes, but as a 
design scheme with a variable center of mass position and 
a variable wheelbase. Also here one can notice non-linear 
graphs when there is a variable in the denominator of the 
corresponding equations (10), (11), (12), (13). 

e) In Fig. 13 it can be seen that the values of 𝐾𝐾𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏  
depend on the relations between the geometric parameters 
of the design scheme, regardless of the absolute values of 
these parameters. 

f) Fig. 14 shows that if we compare robots that have 
𝐾𝐾𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏  with equal values, then their permissible 
accelerations will also be equal, and if the values of their 
masses 𝑚𝑚𝑖𝑖 are equal too – and their permissible forces will 
also be equal (10), (11). 

 
Fig. 3. Coefficients of stability according to 
 𝑧𝑧𝑚𝑚𝑐𝑐 value and 𝑙𝑙 = 0.3, (𝑙𝑙𝑟𝑟 = 1

3
𝑙𝑙;  𝑙𝑙𝑓𝑓 = 𝑙𝑙 − 𝑙𝑙𝑟𝑟). 

 

Fig. 4. Coefficients of stability according to 
 𝑧𝑧𝑚𝑚𝑐𝑐 value and 𝑙𝑙 = 0.6, (𝑙𝑙𝑟𝑟 = 1

3
𝑙𝑙;  𝑙𝑙𝑓𝑓 = 𝑙𝑙 − 𝑙𝑙𝑟𝑟). 
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Fig. 5. Coefficients of stability according 

to 𝑧𝑧𝑚𝑚𝑐𝑐 value and 𝑙𝑙 = 1.2, (𝑙𝑙𝑟𝑟 = 1
3
𝑙𝑙;  𝑙𝑙𝑓𝑓 = 𝑙𝑙 − 𝑙𝑙𝑟𝑟). 

 
Fig. 6. Coefficients of stability according to 
 𝑙𝑙 value and 𝑧𝑧𝑚𝑚𝑐𝑐 = 0.1, (𝑙𝑙𝑟𝑟 = 1

3
𝑙𝑙;  𝑙𝑙𝑓𝑓 = 𝑙𝑙 − 𝑙𝑙𝑟𝑟). 

 
Fig. 7. Coefficients of stability according to 

 𝑙𝑙𝑟𝑟 value and 𝑧𝑧𝑚𝑚𝑐𝑐 = 0.1,  (𝑙𝑙𝑟𝑟 = 1
3
𝑙𝑙;  𝑙𝑙𝑓𝑓 = 𝑙𝑙 − 𝑙𝑙𝑟𝑟). 

 
Fig. 8. Coefficients of stability according to 

 𝑙𝑙𝑓𝑓 value and 𝑧𝑧𝑚𝑚𝑐𝑐 = 0.1 , (𝑙𝑙𝑟𝑟 = 1
3
𝑙𝑙;  𝑙𝑙𝑓𝑓 = 𝑙𝑙 − 𝑙𝑙𝑟𝑟). 

 

Fig. 9. Coefficients of stability according to 
 𝐹𝐹𝑑𝑑𝑟𝑟𝑝𝑝; 𝐹𝐹𝑏𝑏𝑟𝑟𝑝𝑝 value and 𝑧𝑧𝑚𝑚𝑐𝑐: = 0.05: 0.005: 0.15 , 

 (𝑙𝑙 = 0.60; 𝑙𝑙𝑟𝑟 = 1
3
𝑙𝑙;  𝑙𝑙𝑓𝑓 = 𝑙𝑙 − 𝑙𝑙𝑟𝑟). 

 

Fig. 10. Coefficients of stability according to 
 𝑎𝑎𝑑𝑑𝑟𝑟𝑝𝑝;  𝑎𝑎𝑏𝑏𝑟𝑟𝑝𝑝 value and 𝑧𝑧𝑚𝑚𝑐𝑐: = 0.05: 0.005: 0.15 , 

 (𝑙𝑙 = 0.60; 𝑙𝑙𝑟𝑟 = 1
3
𝑙𝑙;  𝑙𝑙𝑓𝑓 = 𝑙𝑙 − 𝑙𝑙𝑟𝑟). 
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Fig. 11. Permissible forces and accelerations according to 

 𝑙𝑙 value and 𝑧𝑧𝑚𝑚𝑐𝑐 = 0.1, (𝑙𝑙𝑟𝑟 = 1
3
𝑙𝑙;  𝑙𝑙𝑓𝑓 = 𝑙𝑙 − 𝑙𝑙𝑟𝑟) , i.e. 𝐾𝐾𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 ≠ 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐. 

 

Fig. 12. Permissible forces and accelerations according to 
 𝑧𝑧𝑚𝑚𝑐𝑐 value and 𝑙𝑙 = 0.4, (𝑙𝑙𝑟𝑟 = 1

3
𝑙𝑙;  𝑙𝑙𝑓𝑓 = 𝑙𝑙 − 𝑙𝑙𝑟𝑟) , i.e. 𝐾𝐾𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 ≠ 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐. 

 
Fig. 13. 𝐾𝐾𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 according to 𝑙𝑙 value when 

 𝑙𝑙𝑟𝑟 = 1
3
𝑙𝑙;  𝑙𝑙𝑓𝑓 = 𝑙𝑙 − 𝑙𝑙𝑟𝑟;  𝑧𝑧𝑚𝑚𝑐𝑐 = 1

6
𝑙𝑙, i.e. 𝐾𝐾𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐. 

 

Fig. 14. Permissible forces and accelerations according to 
𝑙𝑙 value when  𝑙𝑙𝑟𝑟 = 1

3
𝑙𝑙;  𝑙𝑙𝑓𝑓 = 𝑙𝑙 − 𝑙𝑙𝑟𝑟;  𝑧𝑧𝑚𝑚𝑐𝑐 = 1

6
𝑙𝑙, 

i.e. 𝐾𝐾𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐 (see Fig. 13). But here 𝐹𝐹 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐 only when 𝑚𝑚 =
𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐 “(10), (11)”. 

IV. CONCLUSION 
The longitudinal stability of a design scheme of four-

wheeled mobile robots with different values of the 
geometric similarity coefficient was studied. It was found 
that: 

− the permissible driving/braking forces depend on 
the ratio between the individual geometrical 
parameters of the robots' design scheme, i.e. depend 
on the geometric similarity coefficient; 

− the permissible driving/braking forces do not 
depend on the absolute values of the individual 
geometric parameters of the robots' construction, if 
the coefficient of geometric similarity is equal to a 
constant; in this case the permissible 
driving/braking forces will also be equal to a 
constant; 

− the permissible accelerations/decelerations depend 
on the ratio between the individual geometrical 
parameters of the robots' design scheme, i.e. design 
schemes, having equal coefficients of geometric 
similarity have equal permissible 
accelerations/decelerations; 

− the permissible accelerations/decelerations do not 
depend on the absolute values of the individual 
geometric parameters of the robots' design scheme, 
if the coefficient of geometric similarity is equal to 
a constant; in this case the permissible 
accellerations/decelerations will also be equal to a 
constant. 
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