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Abstract — This work recommends the use of an algorithm 
to solve a number of engineering problems related to 
transient conduction during the various processes 
associated with heat transfer through a single or multilayer 
wall. 
A detailed study of the steady-state thermal conductivity in 
a two-dimensional rectangular domain is carried out. Using 
numerical methods specific to the solution of the heat 
conduction equations, a model has been used which gives 
accurate representations of the heat distribution in the 
given geometry. 
The focus of this study is aimed at deepening the practical 
implications of the used numerical methodology. The results 
obtained from analysis highlight the potential for optimizing 
processes related to heat conduction in various engineering 
fields. The proposed numerical approach reveals 
opportunities for precise modelling and improvement of the 
thermal characteristics of various systems especially 
applicable in electronics, industrial systems and the 
implementation of modern thermal insulation materials. 
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heat flux, CFD simulation 

I. INTRODUCTION 
In today's modern, constantly evolving world, the use 

of software products for numerical simulations leads to a 
better understanding and analysis of various physical 
processes. Heat conduction, as such a process, represents 
a micro-process of heat transfer in direct contact between 
the elements with different temperature that make up a 
given medium. This process is common in various 
engineering, technological, industrial, etc. areas and its 
optimization is essential. Examples of this are cooling, 
heating and air conditioning systems and their 
components such as heat exchangers and piping; tanks for 
various fluids and their accompanying pumps and 
throttling devices; thermal switch to control the thermal 
resistance; thermal insulation of walls and windows; and 

many others [1] for which a number of thermal problems 
can be solved. 

The present work focuses on the research and 
performance of the numerical simulation and analysis of 
steady heat conduction within a two-dimensional 
rectangular domain, specifically using the ANSYS 
software [2]. By applying advanced computational 
methods, various problems related to heat conduction can 
be modeled more effectively. 

The primary goal of this article is to ascertain the 
temperature distribution and heat flux within a 2D 
rectangular domain, while also investigating the impact of 
individual parameters on these thermal characteristics. In 
the given two-dimensional domain, the temperature 
changes in only two directions, x and y, and the steady-
state thermal conductivity means that it does not change 
with time, 𝜕𝜕

𝜕𝜕𝜕𝜕
= 0 . This approach is suitable for 

understanding the basic laws of heat conduction in two-
dimensional systems and subsequently developing more 
effective methods of management and control of 
processes related to heat transfer through different media 
[3], [4]. 

To solve the given physical problem, a mathematical 
model is used, in which Laplace's differential equation is 
solved for a two-dimensional flow in a rectangular region 
in the absence of heat generation [5], [6]. The 
mathematical model used is solved using the ASNYS 
solver, which uses the finite element method [7]. This 
involves drawing the geometry of the domain, setting the 
boundary conditions of the problem that define heat 
transfer between the object and its surroundings, 
generating a computational mesh with a specified set of 
elements to solve the heat transfer equations, and 
discretizing these differential equations to solve them by 
ANSYS solver, which will clarify the physics of the 
problem [8], [9]. After program solving for all the 
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elements that make up the mesh, an analysis of the 
obtained results is made. 

II. MATHERIALS AND METHODS 

A. Problem specification 
To fulfil the set objective of the study, a 2D 

rectangular area is drawn in ANSYS and a specific 
mathematical model is set.  The mathematical model 
describing the heat exchange in a two-dimensional 
rectangular domain is introduced in ANSYS, where it is 
solved numerically. The model is a Laplace's equation for 
energy conservation (1). 

                           𝑘𝑘 �𝜕𝜕
2𝑇𝑇
𝜕𝜕𝜕𝜕2

+ 𝜕𝜕2𝑇𝑇
𝜕𝜕𝜕𝜕2

� = 0,                        (1) 

where: k, W/mºC – thermal conductivity coefficient; 

           T, ºС – temperature of the domain. 

The problem under consideration is a Boundary value 
problem related to 2D steady conduction, which means 
that predefined boundary conditions must be introduced. 
The domain has width Δx=W and height Δy=H, where the 
height is twice the width, H=2W [2]. 

When solving the given problem in ANSYS, it is 
necessary to make simplification by using dimensionless 
domain sizes and the mathematical model. In ANSYS, the 
dimensionless model (2) with boundary values is 
introduced, which corresponds to the dimensional one (1). 

                                 �𝜕𝜕
2𝜃𝜃
𝜕𝜕𝜕𝜕2

+ 𝜕𝜕2𝜃𝜃
𝜕𝜕𝜕𝜕2

� = 0.                     (2) 

Dimensioning is performed by defining the 
dimensionless coordinates 𝑥𝑥∗ ≡ 𝜕𝜕

𝑊𝑊
;  𝑦𝑦∗ ≡ 𝜕𝜕

𝑊𝑊
 и 

безразмерната температура 𝜃𝜃 ≡ 𝑇𝑇−𝑇𝑇∞
𝑇𝑇0−𝑇𝑇∞

 [2], където: 

           T0, ºС – constant temperature of the bottom face; 

           T∞, ºС – temperature of the fluid bathing the right 
face. 

For the given domain, three boundary conditions are 
set for the four faces that must match the dimensionless 
model. The dimensionless and dimensional problems are 
given in the Fig. 1 and Fig. 2, respectively. 

 
Fig. 1. Dimensionaless boundary value problem 

 
Fig. 2. Dimensional boundary value problem 

 1st boundary condition – along the lower isothermal 
surface the temperature must be kept constant. In 
order to fulfil this condition, a temperature T=T0 is 
set in the dimensional equation on the lower side, 
where the dimensionless temperature θ=1; 

 2nd boundary condition – no heat exchange with the 
environment must take place on the left and upper 
faces, the surfaces must be adiabatically insulated. 
This means that the heat flux must be zero in both 
directions, 𝜕𝜕𝑇𝑇

𝜕𝜕𝜕𝜕
= 0, 𝜕𝜕𝑇𝑇

𝜕𝜕𝜕𝜕
= 0 and T is assumed to be θ; 

 3rd boundary condition – presence of convection due 
to the fluid flowing around the wall on the right face 
of the domain, −𝜕𝜕𝜃𝜃

𝜕𝜕𝜕𝜕
= 𝐵𝐵𝐵𝐵𝜃𝜃. In the specific case, the 

Biot number is assumed to be 𝐵𝐵𝐵𝐵 ≡ ℎ𝑊𝑊
𝑘𝑘

= 5. In the 
mathematical model, the coefficients are set with 
values: k=1, W=1, h=Bi and T ∞ =0. For the 
coefficient k, the condition of constant thermal 
conductivity in all directions is fulfilled. In the 
specific case, the importance falls on the convection 
coefficient h and its setting. It should be equal to 5. 

For more clarity on the use of the Biot number (Bi), 
some clarifications are provided. The Biot number is a 
critical dimensionless parameter used in the field of heat 
transfer, serving to correctly analyse the interaction 
between thermal conductivity inside a solid body and 
convection of its surface layer. In the sense of thermal 
resistance, the Biot number represents the ratio of the 
thermal conduction resistance inside the body to the 
convection resistance between the surface and the 
environment. Or put it in another way, the value of the 
Biot number is a measure of the temperature drop in the 
solid relative to the temperature difference between the 
surface and the liquid and is defined with a limit value of 
1. At Bi>1, the temperature change inside the body takes 
place much more slowly than that between its surface 
layer and the fluid. Conversely, for Bi<1 the body has a 
smaller temperature gradient compared to that between 
the surface and the liquid, and heat will flow much faster 
inside the material than away from its surface. This would 
allow an assumption to be made of a uniform temperature 
distribution in the material [3], [10]. 

B. Mesh generation 
In any problem involving heat exchange, it is 

important to know the distribution of heat throughout the 
considered domain and its direction depending on the set 
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boundary conditions. The heat flux in any direction is 
proportional to the temperature gradient in that direction. 
This means, in the present case for example, that if the 
flow reaches the left adiabatic face where there is no heat 
exchange, there will also be no temperature gradient in the 
x direction out of the domain, qx=0. 

Discretization of the rectangular domain is done by 
setting a geometry generation mesh containing 32 cells 
and 121 nodes, Fig. 3. 

 
Fig. 3. View of mesh geometry 

All elements have four nodes each, and each internal 
node is common to the four elements surrounding it. In 
order to determine the temperature of the elements, the 
ANSYS solver uses a bilinear polynomial interpolation of 
the four nodal temperatures of a cell, thereby obtaining a 
weighted average value of these four values. For all nodal 
temperatures, the ANSYS solver constructs a system of 
algebraic equations, and each algebraic equation relates a 
nodal temperature to the elements around the 
corresponding node. Thus, the value of this node is related 
to all other temperature values in the surrounding 
elements. In this way, the temperature everywhere in the 
domain can be determined, by interpolation from nodal 
temperatures, and hence the heat flux obtained. 

To reduce the calculation error, it is necessary to 
increase the number of elements, which increases the 
accuracy of the mesh. In this way, the number of 
equations describing the nodal temperatures will also 
increase. Another way to achieve error reduction is by 
increasing the order of the polynomial in each element. 
This can be done when increasing the nodes for each 
element, i.e. in addition to the four end nodes, there 
should be one more between every two, and the ANSYS 
solver will again generate algebraic equations and 
calculate the temperature in all of them. Then the 
interpolation will be of second order in both directions, 
which will lead to a better and more accurate solution to 
the problem. 

III. RESULTS AND DISCUSSION 

A. Change in temperature in the researched domain 
The temperature can be traced at any point in the 

domain, as well as along a straight line in both directions, 
and an assessment can be made as to whether the set 
boundary conditions are met. 

Fig. 4 shows the temperature in the entire domain 
within limits T=(1÷0.045) ºC. On the lower surface, the 

temperature is unchanged, which shows that the boundary 
condition for isothermality on this face is met. 

 
Fig. 4. Change in temperature in the domain 

Tracing the temperature at 51 points along a straight 
horizontal line, Fig. 5, in any other section of the area, it 
becomes clear that it decreases from right to left, which is 
due to the fact that there is no heat exchange with the 
environment through the left face, and such takes place 
only through the right face between the solid body and the 
fluid flowing around it. This can also be seen from the 
graphical representation of the curve showing the 
variation of temperature along length, 𝑑𝑑𝜕𝜕

𝑑𝑑𝜕𝜕
. Towards the 

adiabatic boundary condition, the slope of the curve is 
zero and the temperature is almost constant and highest. 
Further approaching the right face, the slope becomes 
greater, the temperature decreases, which is due to the 
convection between the fluid and the wall. 

 
Fig. 5. Temperature variation along a line 

Table 1 gives the value of the temperature variation. 

TABLE 1 TEMPERATURE VALUES ALONG A LINE 

Point W, [m] T, [⁰C] Point W, [m] T, [⁰C] 

1 0 0.34964 26 0.5 0.28412 

2 0.02 0.34954 27 0.52 0.2787 

3 0.04 0.34923 28 0.54 0.27309 

4 0.06 0.34871 29 0.56 0.2673 

5 0.08 0.34798 30 0.58 0.26131 

6 0.1 0.34704 31 0.6 0.25514 

7 0.12 0.34589 32 0.62 0.24877 

8 0.14 0.34453 33 0.64 0.24222 

9 0.16 0.34296 34 0.66 0.23548 



Lyuba Evtimova Gyurova. Numerical Simulation and Analysis of Two-Dimensional Steady-State Heat Conduction in 2d 
Rectangular Domain 

82 

10 0.18 0.34118 35 0.68 0.22855 

11 0.2 0.33919 36 0.7 0.22143 

12 0.22 0.33699 37 0.72 0.21412 

13 0.24 0.33459 38 0.74 0.20662 

14 0.26 0.33197 39 0.76 0.19884 

15 0.28 0.32913 40 0.78 0.19083 

16 0.3 0.32609 41 0.8 0.1827 

17 0.32 0.32284 42 0.82 0.17444 

18 0.34 0.31938 43 0.84 0.16606 

19 0.36 0.3157 44 0.86 0.15756 

20 0.38 0.31182 45 0.88 0.14893 

21 0.4 0.30773 46 0.9 0.14018 

22 0.42 0.30343 47 0.92 0.1313 

23 0.44 0.29891 48 0.94 0.1223 

24 0.46 0.29419 49 0.96 0.11318 

25 0.48 0.28926 50 0.98 0.10393 

   51 1 0.0946 
 

These findings clearly indicate that the set boundary 
conditions are accurately defined and the simulation 
results confirm them. 

B. Distribution of heat flux in the domain 
Fig. 6 shows the heat flux distribution from each node 

in the form of vectors passing through the domain. The 
distribution is two-dimensional and the two components 
qx and qy are related to the temperature gradients for the 
two directions respectively. 

Analysis of the lower isothermal face shows that there 
is no heat flow there and the heat vector is perpendicular 
only in the y direction. The most heat losses are observed 
in the lower right, and for this reason a large amount of 
heat must be supplied to compensate them and thus keep 
the temperature constant. 

On the left and upper faces, the heat vectors are 
parallel in the respective directions, which confirms the 
absence of heat exchange across these boundaries. 
However, the heat flux is not strictly zero, it has a very 
small value, �⃗�𝑞 = 0.00052415 W/m2 and the variation is 
only in one direction. Of interest is the upper left corner 
where the heat vector is not perpendicular to either the x 
or y direction. This is due to the fact that there is no heat 
flow in either direction in this part of the area and 
therefore the heat vectors change direction. 

On the right side, heat exchange takes place between 
the wall and the fluid and the heat flows to the fluid. At a 
height, heat exchange decreases due to the smaller 
temperature difference. 

 
Fig. 6. Heat flux distribution in the domain 

C. Checking the results obtained 
Since the inputted mathematical model is subject to 

the principle of energy conservation, it is necessary to 
check whether it is respected. The check is made for the 
heat flux passing through the boundaries per unit wall 
thickness. 

Fig. 7 shows the heat calculated by the ANSYS solver 
along the lower isothermal surface, 𝑞𝑞 = 1.6701  W. It is 
positive because its direction is toward the domain, Fig. 6. 

 
Fig. 7. Heat transfer along the isothermal surface 

It can be seen from Fig. 8 that due to the presence of 
heat transfer through the right boundary where convection 
takes place, heat is transferred to the flowing fluid and it is 
negative with a value of 𝑞𝑞 = −1.6701  W. 

 
Fig. 8. Heat transfer on the convective surface 
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In the specific case, in the absence of heat exchange 
through the other two boundaries and due to the condition 
that there is no heat generation, the heat balance depends 
only on the heat exchange through the lower and right 
surface of the region, and from the obtained values it can 
be seen that it is achieved. 

IV. CONCLUSION 
Numerical simulation and analysis of two-dimensional 

steady-state heat conduction in a rectangular domain using 
ANSYS proves to be extremely informative in studying 
thermal behaviour and optimizing design for efficient heat 
transfer. 

In the present study, only the theoretical justification 
of the given problem is considered, without the presence 
of experimental data. As a future project, it is necessary to 
create a specialized experimental setup to provide an 
opportunity to compare the experimental data with the 
theoretically obtained ones. Moreover, when real 
problems arise where heat exchange is present, this 
approach turns out to be good enough and can be applied, 
as well as serve to solve similar problems in three-
dimensional domains or include more complex boundary 
conditions for more further increasing the accuracy of the 
simulations. 

Understanding two-dimensional heat conduction in 
rectangular domains is crucial for: 

- Optimizing cooling systems in electronics; 

- Improving insulation efficiency in buildings; 

- Enhancing automotive cooling systems; 

- Optimizing industrial processes for energy 
efficiency; 

- Designing thermal management solutions in 
aerospace. 

These applications demonstrate the importance of heat 
conduction analysis in various engineering fields for 

optimizing designs and improving performance. 
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