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Abstract. The paper presents an attempt to introduce an 
integrated model for analysing dimensional relationships. 
The basis for the application of a unified approach in 
revealing, analysing and solving the dimensional chains is 
the fact that each element of the dimensional relationships 
in the product has a spatial expression. The practical side of 
the proposed unified model for the analysis of dimensional 
relationships is also presented. The essence of this model is 
that a single approach is applied to solve all dimensional 
chains, regardless of their spatial location. The model 
represents the dimensional chain by the coordinates of a 
sequence of basic points, the distances between which 
determine the components of the dimensional chain. 

Keywords: Mechanical engineering technology, dimensional 
chains, dimensional analysis, CAD-CAM systems. 

I. INTRODUCTION 
In mechanical engineering practice, the sizing of 

products is carried out in the three coordinate planes with 
dimensions, parallel to the coordinate axes. Thus, the 
dimensional relationships in each of the coordinate 
planes are represented by dimensional chains, composed 
of parallel components (dimensions) [1]. Decisive role 
for this approach in construction has the technical and 
technological level of production techniques. The 
guiding principle is to have details with a simple 
geometric shape, which does not require the use of 
production machines with complex construction and 
kinematics. Having in mind that such machines, built 
with hard kinematics, are very expensive, the application 
of the above-mentioned principle is easy to explain for 
the reason of achieving an acceptable cost price of the 
products. It should be definitely said that the modern 
level of production technology has significantly 
outstripped the logic of the construction thinking, and the 
limitation of the simple geometric shape has no 
significant practical value.  Modern machines have 
flexible kinematics, conditioned by independent 
activation of their working elements, the synchronization 
between which is realized by means of computer logic 

and computer control [2]. For this reason, there are no 
technical limitations for production of details with a 
complex shape and relative position of their surfaces, as 
well as of a complex spatial relationship between the 
individual details in the product. 

The simple geometric shape principle in construction 
also reflects in the scientific approach to studying the 
dimensional relationships in the products [3]. Solutions 
have been sought, in which the problem is reduced to a 
uniaxial model of the dimensional relationships – 
dimensional chains with parallel components. This type 
of a model is theoretically well developed. In cases 
where the dimensional chain contains components with 
an angular position with respect to the remaining 
components, transformation of the dimensional chain 
into a uniaxial one is applied, by projecting it onto the 
coordinate axes. Such examples are shown in Fig.1 and 
Fig.2.  

In the first case, a projection on an axis, parallel to 
the closing component is considered. The advantage is 
the simplicity of the model. The disadvantage is that it 
does not reflect the influence of the components, located 
perpendicular to the closing component. This problem 
has been overcome in the second model, where two 
uniaxial chains are obtained, which are projections on the 
two coordinate axes. However, problems arise here also 
in determining the tolerances of the constituent 
components.  

Even more complicated is the case with 3D (three-
dimensional) spatial dimensional chains [4]. It is 
considered that they can be studied as three uniaxial 
chains, which are projections of the spatial chain onto the 
three coordinate axes [5], [6]. 
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Fig. 1. Transformation of the dimensional chain into a uniaxial one 

 

Fig. 2. Transformation of the dimensional chain into two uniaxial 
chains 

It should be noted that regardless of these ideas for 
solving dimensional chains with non-parallel components, 
the issue has not yet been studied sufficiently well and no 
applied algorithms have been developed for use in 
product design. 

II. MATERIALS AND METHODS 
The basis for the application of a unified approach in 

revealing, analyzing and solving the dimensional chains is 
the fact that each element of the dimensional relationships 
in the product has its spatial expression. A dimensional 
chain is a closed loop of serially connected dimensions. 
Each of them is a line segment (part of a straight line), 
whose size and position in space are determined by the 
coordinates of its endpoints.  

The line segment Ai, with a general position in space, 
is shown in Fig. 3. It is defined by the points Mi(xi,yi,zi) 
and M(i-1)[x(i-1), y(i-1), z(i-1)]. Its length is obtained 
from the sum: 

 2 2 2
i i i 1 i i 1 i i 1A (x x ) (y y ) (z z )− − −= − + − + − . (1) 

The differences in this sum are its projections on the 
coordinate axes:  

 xi – xi-1 = Aix;  
 yi – yi-1 = Aiy;  (2) 
 zi – zi-1 = Aiz. 

 

Fig. 3. A line segment in space 

From this example it can be seen that if one of the 
coordinates of the constituent components in a 
dimensional chain is a constant, then the chain will be 
located in a plane, perpendicular to the corresponding 
coordinate axis. For example, with zi = const, it will lie in 
a plane, parallel to xOy. If two of the coordinates are 
constant, the dimensional chain will have parallel 
components, i.e., it is a uniaxial dimensional chain. From 
here it follows that the dimensional chains with parallel 
components and the planar dimensional chains are 
particular cases of the spatial dimensional chains. 
Therefore, they obey a common theoretical model. 

A. Revealing the dimensional relationship 
The task of compiling and solving a dimensional 

chain will be presented in a general form. Fig. 4 shows a 
spatial dimensional chain with non-parallel dimensions.  

 
Fig. 4. Spatial dimensional chain  

The closing component is the dimension АΣ, and the 
remaining dimensions are constituent components. The 
chain is constructed using the vector sum principle. The 
constituent components make up the vector polygon, and 
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the closing component is the resultant vector. In this 
case:  

 
n

i
i 1

A AΣ
=

= ∑
 

. (3) 

When projecting the dimensional chain on the three 
coordinate planes, three planar dimensional chains with 
non-parallel components are obtained.  

The dimensional chain is identified by the 
coordinates of the points М0; М1; М2; ...; Мn. 

The distances between them are the constituent 
components A1; A2; An. 

The closing component is defined by the points M0; 
Mn. 

Therefore: 

 AΣx = xn – x0; 

 AΣy = yn – y0; (4) 

 AΣx = zn – z0. 

For the size of the closing component, it is obtained:  

 2 2 2
x y zA A A AΣ Σ Σ Σ= + + . (5) 

The angular position of the closing component is 
determined by the angles, relative to the three coordinate 
axes:  

 x
x

Aarccos
A
Σ

Σ
Σ

α = ; 

 y
y

A
arccos

A
Σ

Σ
Σ

α = ; (6) 

 z
z

Aarccos
A
Σ

Σ
Σ

α = . 

B. Dimensional tolerances in the dimensional 
chain  

a) Limited summation – “Max - Min” method  

Any change to a component in the dimensional chain 
also changes the closing component. If the dimension of 
the component Аi changes by ∆Аi, a change will occur in 
the coordinates of the point Mi: 

 ∆xi = ∆Ai.ξix; ∆yi = ∆Ai.ξiy; ∆zi = ∆Ai.ξiz, (7) 

where: 

 ix
ix

i

A
A

ξ = ; iy
iy

i

A
A

ξ = ; iz
iz

i

A
A

ξ = . (8) 

The same change will occur in all the other basic 
points, and respectively, in the endpoint of the chain. 

Given that each component of the chain will have a 
different size for the specific product, the coordinates of 
the point Mn, and respectively the change of the closing 
component, will be: 

    
n

x i ix
i 1

AΣ
=

∆ = ∆ ξ∑ ; 

 
n

y i iy
i 1

AΣ
=

∆ = ∆ ξ∑ ; (9) 

 
n

z i iz
i 1

AΣ
=

∆ = ∆ ξ∑ . 

The resizing of the closing component will be: 

 222
zyx ΣΣΣΣ ∆+∆+∆=∆ . (10) 

The closing unit size variance will be within the 
limits: 

 maxmax ΣΣΣ ∆−∆=ω . (11) 

Given that the number (10) is positive (∆Σ ≥ 0) and 
the maximum change of each of the components is 
within the dimension tolerance (∆i max = Ti), from the 
expressions (9) and (10) it is obtained:  

2 2 2n n n

i ix i iy i iz
i 1 i 1 i 1

T T T TΣ
= = =

     
= ξ + ξ + ξ     

     
∑ ∑ ∑ . (12) 

In the design task, the tolerance of the closing 
component is distributed among the constituent 
components according to the principle of the same 
accuracy class, in which the same number βcp of the 
tolerance units is defined for all constituent components. 
The tolerances of the constituent components are 
determined by the calculated average number of 
tolerance units: 

Ti = βcp.Ei.                 (13) 

From the expressions (12) and (13), βcp is found: 

cp 2 2 2n n n

i ix i iy i iz
i 1 i 1 i 1

T

E E E

Σ

= = =

β =
     

ξ + ξ + ξ     
     
∑ ∑ ∑

,(14) 

where Ei is the size of the tolerance unit. It is 
standardized and determined by the expression: 

1 1
6 2

i min max min maxE 0,45(A .A ) 0,001(A .A )= +     (15) 

where Аmin, Amax are the limits of the size interval, in 
which Аi  falls. 

The calculated values of the tolerances are rounded, 
after which a check is performed to see if the inequality 
is fulfilled: 

2 2 2n n n

i ix i iy i iz
i 1 i 1 i 1

T T T TΣ
= = =

     
≥ ξ + ξ + ξ     

     
∑ ∑ ∑ . (16) 

In case of inequality failure, the roundings in the 
tolerances are corrected. 

b) Probabilistic summation  

In the theory of dimensional analysis [5] - [8], based 
on the theory of probabilities, it is assumed that, for n ≥ 4 
the probability for all constituent components to combine 
with their extreme values is a statistically impossible 
event. For this case, the expression for the tolerance of 
the closing component has the form: 
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n

2 2 '
i i i

i 1
T t TΣ Σ

=

= ξ λ∑ . (17) 

where ' 2
i i1 / tλ =  is the relative dispersion, which 

depends on the distribution law of the random variable 
Ai; ξi - the transmission coefficient of the constituent 
component relative to the closing component.  

The coefficient '
iλ  is also defined as the ratio of the 

root-mean-square deviation and the scattering field, as it 
follows: 

 
2

' i
i

i

2 σ
λ =  ω 

. 

For the normal law ω = 6σ, where '
i 1 / 9λ = . For the 

law of equal probability (b a) / 2 3σ = −  and ω = (b–a), 
whereupon '

i 1 / 3λ = . For the law of the triangle 

a / 6σ =  and ω = 2a, whereat '
i 1 / 6λ = . 

Under the assumption that all constituent components  
are distributed according to the normal law ( '

i 1 / 9λ = ) 
and a risk of waste of 0,27% (tΣ=3) is accepted, equation 
(17) takes the form: 

 
n

2 2
i i

i 1
T TΣ

=

= ξ∑ . (18) 

In 3D dimensional chains, the tolerance of the closing 
component will be: 

 

n n n
2 2 2 2 2 2
i ix i iy i iz

i 1 i 1 i 1

n
2 2 2 2
i ix iy iz

i 1

T T T T ;

T T ( ).

Σ
= = =

Σ
=

= ξ + ξ + ξ

= ξ + ξ + ξ

∑ ∑ ∑

∑
 (19) 

Considering the fact, that: 2 2 2
ix iy iz 1ξ + ξ + ξ = , from the 

expression (19) we obtain: 

 
n

2
i

i 1
T TΣ

=

= ∑ . (20) 

In the design task in expression (20) the tolerances of 
the constituent components are replaced by the 
expression (13), which gives: 

 
n

2
cp i

i 1
T EΣ

=

= β ∑ . (21) 

The average number of the tolerance units in the case 
of probabilistic summation of the tolerances is: 

 cp n
2
i

i 1

T

E

Σ

=

β =

∑
. (22) 

The tolerances of the constituent components are 
determined by the calculated average number of 
tolerance units: 

Ti = βcp.Ei. 

The calculated values of the tolerances are rounded, 
after which a check is performed to see if the inequality 
is fulfilled: 

 
n

2
i

i 1
T TΣ

=

≥ ∑ . (23) 

In case of inequality failure, the roundings in the 
tolerances are corrected. 

C. Determining the average values of the tolerance 
zones 

The average value of the tolerance zone defines the 
clustering center for the scatter of the corresponding 
dimension. The coordinate of this center is located on the 
dimension line and determines the deviation from the 
nominal size. It is accepted that the displacement of the 
average value of the tolerance zone with respect to the 
nominal size is denoted by EM. The relationship between 
the average values of the tolerance zones of the 
constituent components and of the closing component is 
analogous to the dependence (5): 

 2 2 2
x y zEM EM EM EMΣ Σ Σ Σ= + + , (24) 

where 

 x xEM EMΣ Σ Σ= ξ ;  

 y yEM EMΣ Σ Σ= ξ ; (25) 

 z zEM EMΣ Σ Σ= ξ .  

When solving the design task, the average value of 
the tolerance zone of the closing component is set, and 
those, of the constituent components must be determined. 
For this purpose, the average value for one of the 
components remains unknown, while for the others, the 
average values are chosen for constructive and (or) 
technological reasons. The unknown average value is 
determined by the equations (26): 

 
n n

x ix i ix
i 1 i 1

EM EM EMΣ
= =

= = ξ∑ ∑ ; 

 
n n

y iy i iy
i 1 i 1

EM EM EMΣ
= =

= = ξ∑ ∑ ; (26) 

 
n n

z iz i iz
i 1 i 1

EM EM EMΣ
= =

= = ξ∑ ∑ . 

III. RESULTS AND DISCUSION 

A. Example 1 
Fig.5 shows the construction of a two-piece body  

with a gear. It is necessary to ensure during assembly the 
accuracy of the centre-to-centre distance, which is a 
closing component of the dimensional chain. 

The initial construction data are: 

AΣ = 160 ± 0,1 mm; A1 = 150 mm; 

A2 = 38,6 mm; A3 = 100 mm; A4 = 70 mm. 

To determine the coordinates of the basic points, the 
coordinate system must be defined. It is correct that the 
coordinate system coincides with the mounting base. It 
will also be used as a technological base for orienting the 
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workpiece during detail processing. Fig.5 shows the 
coordinate system and the coordinates of the basic points. 

 
Fig. 5. Two-piece body with a gear. 

а) Check for the nominal value of the closing 
component: 

AΣy = y4 – y0; 
AΣy = 70 – 150 = – 80 mm; 
AΣz = z4 – z0; 
AΣz = 100 – (– 38,6) = – 138,6 mm; 

2 2
y zA A AΣ Σ Σ= + ; 

2 2A ( 80) 138,6 160,03Σ = − + =  mm. 

b) Determining the tolerances of the constituent 
components 

• Magnitudes of the tolerance units: 

А1=150 mm dimensional interval 
120 to 180 mm 

E1=2,52 

А2=38,6 mm dimensional interval 
30 to 50 mm 

E2=1,56 

А3=100 mm dimensional interval 
80 to 120 mm 

E3=2,17 

А4=70 mm dimensional interval 
50 to 80 mm 

E4=1,86 

• Transmission coefficients: 
1y 1 0

1y
1 1

A y y 0 150 1
A A 150

− −
ξ = = = = − ; 

1 01z
1z

1 1

z zA 38,6 ( 38,6) 0
A A 150

− − − −
ξ = = = = . 

They are determined in a similar way for the other 
components: 

ξ2y = 0; ξ3y = 0; ξ4y = 1; ξ2z = 1; ξ3z = 1; ξ4z = 0. 

• Average number of tolerance units in case of 
limited  summation of the tolerances: 

cp 2 2
1 4 2 3

200 34,76
(E E ) (E E )

β = =
+ + +

.  

• Dimensional tolerances: 

T1 = βcp.E1 = 34,76 . 2,52 = 87,6;  
T2 = βcp.E2 = 34,76 . 1,56 = 54,23; 
T3 = βcp.E3 = 34,76 . 2,17 = 75,434;  
T4 = βcp.E4 = 34,76 . 1,86 = 64,66. 

Rounded: 

T1 = 88 µm; T2 = 54 µm; T3 = 75 µm; T4 = 64 µm. 

Check: 

2 2
1 4 2 3T (T T ) (T T ) 199,36Σ ≥ + + + = . 

• Average number of tolerance units in 
probabilistic summation of the tolerances: 

cp 2 2 2 2
1 2 3 4

200 48,54
E E E E

β = =
+ + +

. 

• Dimensional tolerances: 

T1 = βcp.E1 = 48,54 . 2,52 = 122,32; 
T2 = βcp.E2 = 48,54 . 1,56 = 75,72; 
T3 = βcp.E3 = 48,54 . 2,17 = 105,33; 
T4 = βcp.E4 = 48,54 . 1,86 = 90,28. 

Rounded: 

T1 = 120 µm; T2 = 76 µm; T3 = 105 µm; T4 = 90 µm. 

Check: 

2 2 2 2T 120 76 105 90 201,04Σ ≥ + + + = . 

Correction: 

T1 = 120 µm; T2 = 80 µm; T3 = 100 µm; T4 = 90 µm. 

Check: 

2 2 2 2T 120 80 100 90 197,23Σ ≥ + + + = . 

c) Average values of the tolerance zones 

It is accepted that: ЕМ2 = ЕМ3 = ЕМ4 = 0. 

In this case from equations (26) we get: 
n

y iy 1y
i 1

EM EM EMΣ
=

= =∑ ; 
n

z iz 1z
i 1

EM EM EMΣ
=

= =∑ . 

Given as an initial condition EMΣ =0, it follows that 
EM1 =0 as well.  

d) Representation of dimensions by means of limit 
deviations 

• Limited summation 

A1 = 150 ± 0,044; A2 = 38,6 ± 0,027; 
A3 = 100 ± 0,037; A4 = 70 ± 0,032. 

• Probabilistic summation 

A1 = 150 ± 0,06; A2 = 38,6 ± 0,04; 
A3 = 100 ± 0,05; A4 = 70 ± 0,045. 

B. Example 2 
The developed theoretical model will be applied to 

solving the dimensional chain, presented in Fig.4. The 
design task is solved, having the closing component set 
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AΣ=70±0,1 mm. The coordinates of all basic points are 
also set, with the exception of the point M4. Thus, left for 
specifying is the dimension A5, by means of which 

achieving the set dimension of the closing component 
will be ensured. For clarity, the solution to the problem is 
presented in Table 1. 

TABLE 1 SPATIAL DIMENSIONAL CHAIN 
  X Y Z Ax Ay Az A xx xy xz  
 M0 70 55 5         

A1 M1 110 95 50 35 40 30 61,03 0,57 0,66 0,49  
A2 M2 85 115 70 -25 20 25 40,62 -0,62 0,49 0,62  
A3 M3 125 100 100 40 -15 40 58,52 0,68 -0,26 0,68  
A4 M4 35 45 80 -85 -55 -20 103,20 -0,82 -0,53 -0,19  
A5 M5 50 25 65 15 -20 -15 29,15 0,51 -0,69 -0,51  
AS     -20 -30 60 70,00 -0,29 -0,43 0,86  

 
 Amin Amax Acp Ei Ei*xx Ei*xy Ei*xz Ei

2 T1 T2 T1 T2 
         calculated rounded 

A1 50 80 63,25 1,86 1,06 1,22 0,91 3,45 43,94 93,52 45 90 
A2 30 50 38,73 1,56 0,96 0,77 0,96 2,44 36,96 78,66 35 80 
A3 50 80 63,25 1,86 1,27 0,48 1,27 3,45 43,94 93,52 45 90 
A4 80 120 97,98 2,17 1,79 1,16 0,42 4,72 51,43 109,46 50 110 
A5 18 30 23,24 1,31 0,67 0,90 0,67 1,71 30,95 65,87 30 65 

     5,76 4,52 4,24 15,76     
     33,13 20,39 17,94 3,97     
      8,45       
  TS = 200  b1 = 23,68 b2 =50,38     

 
The algorithm for solving the task is as it follows: 

1. The projections of the component A5 along the three 
coordinate axes are determined, and, respectively, the 
coordinates of the point M4: 

4

5x x ix
i 1

A A A 15Σ
=

= − + =∑ ; 

M4 M5 5xX X A 35= − = ; 
4

5y y iy
i 1

A A A 20Σ
=

= − + = −∑ ;  

M4 M5 5yY Y A 45= − = ; 
4

5z z iz
i 1

A A A 15Σ
=

= − + = −∑ ;  

M4 M5 5zZ Z A 80= − = . 

2. The nominal dimensions of the constituent 
components are determined: 

2 2 2
i ix iy izA A A A= + + . 

3. The transmission coefficients are found by formula 
(8). 

4. The magnitudes of the tolerance units are 
determined, using formula (15). 

5. The average number of tolerance units β1 is 
determined by the max-min method - formula (14) and β2 
is found by the probabilistic method - formula (22). 

6. The tolerances T1 (for the max-min method) and T2 
(for the probabilistic method) are calculated according to 
formula (13), after which they are rounded. 

7. The average values of the tolerance zones are 
defined. In this case, the tolerance of the closing 
component is symmetrically located with respect to the 
nominal dimension, which is convenient to accept also 
for the constituent components, i.e., Ai = Ai ± 1/2Ti. 

IV. CONCLUSIONS 
The presented mathematical model and methodology 

for analyzing and solving the tasks of dimensional 
analysis, confirm the raised thesis of a unified approach 
to considering the dimensional chains with parallel 
components, planar and spatial dimensional chains. It is 
irrefutably proven that dimensional chains with parallel 
components and planar dimensional chains are special 
cases of the spatial dimensional chains. There is no need 
for a different approach when solving them, as they are 
the different sides of the same whole. 

Defining a dimensional chain by means of the 
coordinates of the basic points presents a new approach 
to revealing and solving it. The basic points are the points 
of contact between the surfaces of the connected 
elements in the structure. They are known in result of the 
automated product design. They are also used for 
production of parts by means of CNC machine tools. 
Presented this way, dimensional analysis becomes a 
compatible and natural element of the modern CAD-
CAM systems. 
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