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Abstract. This article examines the use of an AI-powered 
automated image analysis system. The system's purpose is to 
enhance the workflow of students during applied physics 
laboratory experiments, helping them analyze images and 
perform accurate microobject counting. On the software 
side, the system incorporates machine learning algorithms 
for visual processing applications using Python and its’ 
extension libraries – CV2, Tensorflow, Keras, SkLearn etc.. 
The hardware consists of a camera and microprocessor, 
which, in conjunction with the image processing software, 
perform microobject recognition and counting in real-time. 
The goal is to automate applied physics laboratory 
experiments in which the counting of microobjects, be it 
organic or human-made, is usually done manually. During 
these applied physics laboratory experiments and with the 
aid of this system, students are exposed to a modern 
workflow, further preparing them for future work 
environments, teaching them about process automation, and 
further increasing their interest in micro-scale related 
science subjects. Automation using image processing 
technology combined with automatic data logging from 
images allows for fast and accurate micro-object counting. 

Keywords: Image Processing, Interdisciplinary 
Connections, Experiments Automation. 

I. INTRODUCTION 
Blood cell counting by laboratory utilizes a 

microscope. This conventional task is laborious and time 
consuming, and is largely dependent on the physician’s 

skill. Fast and cost-effective production of blood cell count 
reports is of paramount importance in the health care 
industry. The traditional method of manual counting under 
the microscope yields inaccurate results and puts an 
intolerable amount of stress on the medical laboratory 
assistants [2]. Automated analysis of medical cell images 
has been gaining more importance in pharmacology and 
toxicology practice. Extraction of accurate quantitative 
data about the cell morphology is a critical task. An 
automated procedure for cell analysis is highly desirable 
since there may exist hundreds of images for each patient. 
In fact, one of the most challenging tasks is to extend the 
traditional approaches to segmentation and object 
classification. 

In physics laboratories, students usually get their first 
touch with the microscope, which is a very important part 
of diagnostic laboratories. As mentioned previously 
microscopes are usually equipped with advanced software 
to diagnose, measure, or count specific particles found in 
patient fluids or tissues. But the first-year medical students 
are learning those techniques by hand. Working with a 
microscope using precise methods that are usually very 
time-consuming for the students as well as professors also 
that method is becoming outdated having in mind that 
applied sciences university’s goal is to prepare students for 
future jobs as well as possible. The stained blood smears 
are typically viewed and identified with an upright 
brightfield microscope such as ZEISS AxioLab A1 [2]. 

https://doi.org/10.17770/etr2024vol2.8068
https://creativecommons.org/licenses/by/4.0/


Eivin Laukhammer et al. Application of AI-Enhanced Image Processing Methods for Educational Applied Physics 
Experiments 

418 

Precise medical drawings can still be found in use as 
reference images today (Figure 1).  

 
Fig 1. Model (a) + Real Erythrocyte (b) of blood cells 

 

Maximum optical performance can only be achieved 
through the interaction of all the optical components, such 
as the lens, condenser, and eyepiece. A microscope camera 
with a high dynamic range precise image acquisition at the 
pixel level should be used to document or archive the 
results [3], [8]. 

The examination of blood under a microscope is a 
precise and equally complex procedure. The 
distinguishing features of the blood cells that are revealed 
must be clearly displayed in order to be classified correctly 
by the “eye of the trained observer” during daily routine 
activities [23], [25]. 

The traditional microscopic method based on the count 
of 100 cells has three types of errors: statistical error, 
distributional error owing to unequal distribution of cells 
in the smear, and error in identifying cells related to the 
subjective interpretation of the examiner. This method, 
therefore, suffers from imprecision, poor accuracy, and 
reduced clinical sensitivity [14], [15]. An example of an 
unknown object (Cancer) in blood is shown in Figure 3. 

 

Image processing applications are very important in 
medical diagnostics, and incorporating them in education 
makes the learning process faster and introduces medical 
students to technologies they will see later in life. With this 
technology, the motivation of students can be improved 
because they see the possible opportunities for the future. 
Figure 4. 

 
Fig 4. Introducing high-tech methods for the education 

process to improve student motivation  
 

Due to fast improvements in hardware and software, 
physics laboratories can be provided with very precise 
measuring and counting software that uses video or photo 
analysis. 

II. REALIZATION OF AN EXPERIMENTAL EDUCATIONAL 
SYSTEM 

The modern information technology application to 
computer-based experiments is conducted on similar 
methods. With modern image processing technologies, 
Python programming, and OpenCV libraries, the system 
for automated physics laboratory experiments was created 
(Fig. 5).  

 
Fig 5. Block diagram for the system 

 

The system consists of created software developed on 
a personal computer and a hardware measurement system 
consisting of a microscope and a video camera.  

The research object is measured by the comparison 
method, where the dimensions of the measured object are 
compared with the dimensions of the reference object. The 

 
Fig 3. Blood Cancer cell detection example 
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resulting image enters the video camera through a 
microscope, and the camera converts it into a video signal. 
Several libraries can be utilized for image processing, 
classification, and counting tasks in Python to achieve 
different aspects of these tasks. In particular, the machine 
learning and deep learning libraries (TensorFlow, Keras, 
PyTorch) would be very useful for classification and 
counting. They provide algorithms to classify images after 
being trained on labeled data and perform object detection 
and counting. OpenCV also supports some machine 
learning algorithms and can be used with these libraries for 
such tasks [5], [8], [27]. 

Fungi classification 

In image processing, the classification of fungi 
involves the use of algorithms and computational 
techniques to identify and categorize different types of 
fungi based on images. This process is significant in 
various fields, such as agriculture, food safety, 
environmental monitoring, and medical diagnosis. Image 
processing for fungi classification [6], [13], [17], [21]. 

Os: This is a standard Python library for interacting 
with the operating system. It provides functions for file 
and directory operations. 

NumPy (np): NumPy is a fundamental package for 
numerical computing in Python. It supports large, multi-
dimensional arrays and matrices and a collection of 
mathematical functions to operate on these arrays. 

matplotlib.pyplot (plt): Matplotlib is a plotting library 
for Python. Pyplot is a module in Matplotlib that provides 
a MATLAB-like interface for creating and customizing 
plots. 

seaborn (sns): Seaborn is a statistical data visualization 
library based on Matplotlib. It provides a high-level 
interface for drawing attractive and informative statistical 
graphics. 

keras.applications.vgg16: Keras         Applications 
provides pre-trained deep learning models for use in 
various applications. VGG16 is one such pre-trained 
convolutional neural network (CNN) model that is known 
for its simplicity and effectiveness. 

keras.models: This module in Keras provides the basic 
building blocks for defining neural network models. It 
includes classes like Model for defining models and 
Sequential for creating models’ layer by layer. 

keras.layers: This module contains various layer 
implementations that can be used to build neural networks. 
We incorporated layers such as Flatten, Dense, Dropout, 
Conv2D, MaxPooling2D, and LeakyReLU. 

keras.preprocessing.image: This module provides 
utilities for preprocessing image data and performing data 
augmentation. It includes functions for loading images 
from disk, resizing, and applying transformations. 

keras.optimizers: This module contains 
implementations of various optimization algorithms that 
can be used to train neural networks. The Adam optimizer 
is an adaptive learning rate optimization algorithm that is 
widely used in training deep neural networks. It stands for 
Adaptive Moment Estimation and combines ideas from 

two other popular optimization algorithms: AdaGrad and 
RMSProp. 

keras.callbacks: Keras callbacks are objects that can 
perform actions at various stages of training (e.g., at the 
start or end of an epoch). Examples include EarlyStopping, 
ModelCheckpoint, and ReduceLROnPlateau, which help 
control the training process and prevent overfitting. 

sklearn.metrics: This module from scikit-learn 
provides functions for evaluating the performance of 
machine learning models. 

keras.regularizers: Keras provides support for adding 
regularization to neural network layers. Regularization 
techniques like L2 regularization (weight decay) can help 
prevent overfitting by adding a penalty term to the loss 
function. 

keras.backend (K): This module provides functions 
that operate on tensors, which are the basic data structures 
used in neural networks. It abstracts away the backend 
implementation (e.g., TensorFlow, Theano) and allows for 
writing code that is backend-agnostic. 

cv2: OpenCV (Open Source Computer Vision Library) 
is a library of programming functions mainly aimed at 
real-time computer vision. The cv2 module provides 
functions for image processing, manipulation, and 
computer vision tasks. 

tensorflow (tf): TensorFlow is an open-source deep 
learning framework developed by Google. Keras can run 
on top of TensorFlow, providing a high-level interface for 
building and training neural networks. In our case 
TensorFlow is being used as the backend for Keras. 
Dataset [19], [21], [24]. 

License: For Fungi detection, the DeFungi Dataset was 
chosen [4], [10], [11]. It is being used under Attribution 
4.0 International (CC BY 4.0 DEED) license, which 
allows us to use the dataset freely and to train our machine 
learning model based on this dataset. 

The dataset consists of 5 classes: 
• H1: Candida albicans 
• H2: Aspergillus niger 
• H3: Trichophyton rubrum 
• H5: Trichophyton mentagrophytes 
• H6: Epidermophyton floccosum 

TABLE 1 DEFUNGI DATASET CLASS DISTRIBUTION 

Class Training set Validation Set Test Set 

H1 1000 437 437 

H2 1000 232 233 

H3 1000 81 82 

H5 1000 80 80 

H6 1000 69 70 

Total 5000 899 902 
 

In order for the model to accurately predict a given 
class from an input image, the dataset needs to be diverse 
enough so that the model can train on all kinds of scenarios 
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and accurately predict a class given almost any 
circumstance: (Fig 6.). 

  
Class: Hl Class: H2 

  
Class: H3 Class: H5 

 

 
 Class: H5 

Fig 6. Example images from different class 

 

Curating Challenging Examples: Including 
challenging examples in the dataset helps the model learn 
to handle complex scenarios and edge cases. These 
examples may include occluded objects, objects under 
different poses, cluttered backgrounds, variations in 
illumination, and other challenging conditions. By 
exposing the model to diverse and challenging examples 
during training, it becomes more resilient and capable of 
making accurate predictions in real-world scenarios. 

Class Balancing Techniques: Addressing class 
imbalance is essential for ensuring that the model receives 
sufficient training examples for each class. Techniques 
such as oversampling minority classes, undersampling 
majority classes, or using synthetic data generation 
methods help balance the distribution of samples across 
classes. This ensures that the model does not become 
biased towards predicting the majority class. 

Data Augmentation: Data augmentation involves 
applying a variety of transformations to existing images to 
create new, slightly modified versions of them. Common 
augmentation techniques include rotation, flipping, 
scaling, cropping, translation, brightness adjustment, and 
adding noise. Augmentation helps introduce variability 
into the dataset and enables the model to learn invariant 
features across different conditions. 

Data augmentation techniques used: 

Rescaling (Normalization): The rescale parameter is 
set to 1/255 for all data generators (train, validation, and 
test). 

Rotation Range: Rotation range is set to 40 degrees. 
Rotation augmentation helps the model become more 
robust to variations in object orientations. 

Width and Height Shift Range: Width and height shift 
ranges are set to 20% of the total width and height, 
respectively. This augmentation technique introduces 
translations of the image horizontally and vertically. 

Shear Range: Shear range is set to 20%, and involves 
stretching or skewing the image along its x-axis or y-axis.  

Zoom Range: Zoom range is set to 20%. Zoom 
augmentation allows the model to learn from images at 
different scales. 

Horizontal Flip: Horizontal flip is enabled 
(horizontal_flip=True). Horizontal flipping mirrors the 
image horizontally, providing additional training 
examples while maintaining the same class label. 

Fill Mode: The fill mode is set to 'reflect'. The fill mode 
determines the strategy used for filling in newly created 
pixels that may arise during augmentation, such as after 
rotation or shifting operations. 

In summary, by employing these data augmentation 
techniques, the model is exposed to a more diverse set of 
training examples, which helps improve its generalization 
ability and robustness to variations in input data, 
ultimately enhancing its performance on unseen data. 

Neural Network architecture. 

Base Model (VGG16): VGG16 is a pre-trained 
convolutional neural network architecture that has been 
trained on the ImageNet dataset [18]. Additional 
parameter: include top=False parameter means that the 
fully connected layers (the classifier part) of the VGG16 
model are not included [16]. This parameter allows for 
adding custom fully connected layers on top of the 
convolutional base. The input shape is set to (64, 64, 3), 
which is the shape of the dataset images [20], [22]. 

Neural Network architecture shown in Figure 7. 

 
Fig 7. Neural Network architecture 
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Additional CNN Layers: 

• After the base model, there's a Flatten layer to 
flatten the output of the base model before 
passing it to the fully connected layers. 

• Two Dense layers are added with 512 and 256 
units respectively. Each Dense layer is 
followed by a LeakyReLU activation function 
with an alpha of 0.1, which helps prevent the 
dying ReLU problem by allowing a small, 
positive gradient when the unit is not active. 

• Dropout layers with a rate of 0.5 are added 
after each Dense layer to prevent overfitting 
by randomly dropping a proportion of the 
units during training. 

• Finally, there's a Dense layer with 5 units 
(since the model is trained on 5 classes) and 
softmax activation function to output 
probabilities for each class. 

Freezing Layers: All layers of the pre-trained VGG16 
model are frozen, meaning their weights will not be 
updated during training. This is a common technique in 
transfer learning to prevent the pre-trained weights from 
being destroyed [26]. 

Optimizer: Adam optimizer is used with a learning rate 
of 0.0001 and a decay rate of 1e-6. The learning rate decay 
is applied to gradually reduce the learning rate during 
training, which can help the model converge better 
towards the end of training. Adam optimizer combines the 
benefits of AdaGrad and RMSProp optimizers. It 
maintains per-parameter learning rates and adapts them 
based on the moving averages of the first and second 
moments of the gradients. 

Callbacks: EarlyStopping monitors the validation loss 
and stops training if there's no improvement after a certain 
number of epochs (patience). It helps prevent overfitting. 

ReduceLROnPlateau: Reduces the learning rate when 
the validation loss has stopped improving, which can help 
the model to converge better. 

ModelCheckpoint: Saves the best model based on 
validation loss. 

Training 

The model is trained using the mode.fit() method with 
the training and validation generators. The number of steps 
per epoch and validation steps are calculated based on the 
number of samples and batch size of the generators. 

To summarize, this architecture is structured for 
transfer learning with VGG16 as the base model, and it 
utilizes techniques like dropout regularization, learning 
rate decay, and early stopping to prevent overfitting and 
improve convergence. 

Model evaluation 

Models’ performance was evaluated by generating a 
classification report and confusion matrix. 

 

 

TABLE 2 CLASSIFICATION REPORT 

 precision recall  f1-score support 

H1 0.49 0.54 0.52 437 
H2 0.32 0.21 0.26 233 
H3 0.09 0.10 0.09 82 
H5 0.13 0.16 0.14 80 
H6 0.10 0.10 0.10 70 
          
accuracy     0.35 902 
macro 
avg 0.23 0.22 0.22 902 

weighted 
avg 0.35 0.35 0.35 902 

 

From the classification report we can see that the H1 
class was most effectively trained, producing the highest 
f1-score out of all evaluated classes. These results also 
show that the dataset has a class imbalance that the data 
augmentation techniques were not able to account for 
completely. The culprit is most likely that the training 
images were not that similar to the validation images, 
therefore resulting in a somewhat poor classification 
capability. 

Train images examples for H1 shown in Figure 8. 

  
Fig. 8. H1 Train image examples 

From the classification report we can see that the H1 
class was most effectively trained, producing the highest 
f1-score out of all evaluated classes. These results also 
show, that the dataset has a class imbalance that the data 
augmentation techniques were not able to completely 
account for. The culprit is most likely that the training 
images were not that similar to the validation images, 
therefore resulting in a somewhat poor classification 
capability (Fig. 9). 

  
Fig. 9. H1 Validation image examples 

The other issue with the dataset is it’s image size. One 
image is 64 by 64 pixels, which is fairly small. An image 
upscaling algorithm could be used to increase the fidelity 
of the images, though the problem would be finding an 
algorithm that would properly work on the provided image 
type, since most upscales are trained on more common 
types of objects. The confusion matrix shown in Figure 10. 
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Fig 10. Confusion Matrix Fig 2. Confusion Matrix 
Confusion matrix class labels – 0 is H1, 1 is H2, 2 is 

H3, 3 is H5, 4 is H6. 

Some insights from the confusion matrix: 

• The overall accuracy of the classification algorithm is 
69%, which is calculated by dividing the sum of the 
diagonal cells by the total number of data points. 

• The algorithm is most accurate at classifying H1, with 
an accuracy of 81%. 

• The algorithm is least accurate at classifying H5, with 
an accuracy of 40%. 

• The algorithm is more likely to misclassify H1 as H2 
and H3 as H5. 

The model accuracy vs epochs graph shows the Figure 
11. Increasing accuracy of the model after a given number 
of epochs. 

 
Fig 11. Model accuracy vs Epoch 

 

The largest increase in accuracy occurs during the first 
5 training epochs, after which the accuracy evens out. The 
blue line represents the training data and the orange line 
represents the validation data. Looking at the validation 

data line, we can yet again confirm the imbalance of the 
dataset, seeing that the model is not quite capable of easily 
increasing it’s validation accuracy after each training 
epoch, as it doesn’t always increase. 

III. RESULTS 
Measurement example: 
In applying artificial intelligence, a measuring 

system was utilized to conduct initial practical 
experiments in applied physics. The system counted cells 
with 93% accuracy compared to visually counted method 
in classic way. The example of computer screen during 
laboratory experiment, presented in Figure 12. 

 

 
Fig 12. Cells count = 156 

 
One of the most important aspects, in terms of the 

application of automated image analysis based on 
dedicated algorithms, is the time required for image 
analysis. Traditional techniques for the quantitative 
determination are universal and efficient but, 
simultaneously, time-consuming (the classical manual 
method would take at least 50% longer). 

The Figure 13 how students of different courses and 
different specialties can cooperate in an interdisciplinary 
way designing AI-based system and during applied 
physics experiments. 

 
Fig 13. The interdisciplinary connections between 

different subjects. 
 
The physics experiment of medical microscopy is 

designed for I year Nursing students who study Applied 
Physics. The III-year Electronics Engineering students 
participate in designing the physics experiment hardware 
and software. While developing the Applied physics 
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experiment system, they study subjects such as Artificial 
Intelligence and Python programming. Together with II-
year Computer Engineering students, they create the 
software and hardware for the experiment. In this way, 
students of different specialties and different years not 
only learn the knowledge of their subject during their 
studies but also apply it to improve the study process on 
an interdisciplinary principle. 

IV. CONCLUSION 
The following conclusions can be made from the 

analysis of the application of the AI- based physics 
laboratory experiment developed by the students: 
• AI-based Image processing applications for physics 

laboratory experiments facilitate the experimentation 
process and reduce the time spent on the analysis. 

• During the first year, the student understands the 
practical benefits of the individual studies, and this 
option increases student motivation 

• The automated system not only increased the interest 
of the students in experimental work, automation, and 
application of new technologies but also facilitated the 
professors’ work by performing complex laboratory 
experiments that require a lot of precision work 

 
AI-based image analysis methods can be successfully 

used for accurate, efficient and fast image analysis and 
widely applied in the learning process. 

A comparison of traditional and automated image 
processing methods allows students to more easily 
understand the essence of modern research, to highlight 
the advantages and disadvantages of the methods. 
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