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Abstract. In order to reduce the number of accidents in such 
sectors of work, such as, driving vehicles, the operator's 
work on the radar screen, a system is required capable of 
determining the degree of fatigue of a particular person at a 
given moment of time according to the data received from 
sources of information, preventing arbitrary fall asleep and 
providing recommendations for further action regarding 
rest options up to work suspension. The system shall be 
suitable for a situation where the space of the measured 
parameters consists predominantly of parameters with no 
numerical values (gradations). There is only a linguistic 
description with a scoring scale. For this parameter group, 
it is proposed to use the theories of the non-strict and 
linguistic variables for the implementation of decision 
procedures. It not only brings a portion of the system’s 
operating algorithm calculations into an environment of 
non-strict mathematics and also allows the decision to 
return to the normal environment. The work provides a 
calculation algorithm in a non-strict environment and a 
description of the resulting computer system. 

Keywords: decision making, human fatigue, linguistic 
variables, membership functions. 

I. INTRODUCTION 
In this work, a methodology for determining the level 

of fatigue and sleepiness is proposed, a set of parameters 
to be measured or obtained has been created, which has 
the highest possible informativeness and the lowest 
possible disturbing impression or inconvenience to the 
person being tested. The objective parameters to be 
measured are only eye blink frequency and 
electroencephalogram (EEG) α, β and θ wave 
characteristics as it is covered in the previous work of the 
authors [1]. The emphasis of the previous work was to 
research the connection of different fatigue indices in 
relation to mental or physical types of human fatigue. The 
following article covers decision making in case of mental 
fatigue. Another research was performed by the authors to 
distinguish the non-standard relations between mental 
fatigue and drowsiness to create a fast alert block in case 

of driver drowsiness condition is detected [2]. However, 
the fatigue decision making core component is covered in-
depth in the current paper.  

II. MATERIALS AND METHODS 
The fatigue detector input parameters are organized in 

two groups – objective and subjective measurement 
parameters. The subjective parameters to be used are 
organized into 3 groups: the anamnesis questionnaire 
contains 8 parameters, the survey questionnaire before the 
start of work includes 3 parameters and during the process 
intervals, when performing cognitive function tests, 
another 4 parameters are obtained. Such a combination of 
input parameters confirms the idea that it is necessary to 
apply non-strict set theory and linguistic variables [3], [4]. 
A linguistic variable differs from a numerical one in that 
its values are not numbers, but words or concepts, for 
example, the expression of pain is a linguistic variable 
with the values “weak”, “moderate”, “strong”, “very 
strong”. The situation with the non-strict and linguistic 
variables can be demonstrated with Fig. 1, where two 
linguistic variables “stress level” and “night work 
intensity” obtained from the anamnesis questionnaire are 
shown.  

 
Fig. 1. Linguistic and non-strict variable relations. 

Their values are gradations “very weak” (v.w.), 
“weak” (w.), “moderate” (m.), “strong” (s.), “very strong” 
(w.s.), which in turn are non-strict variables with values 
from the base (universal) numerical scale U. At the lowest 
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level with compliance function µv.w.(ui) ÷µv.s.(ui) it is 
possible to find the values for the non-strict variables. 
from “very weak” to “very strong” gradation.  

At the highest level with compliance functions for 
linguistic variables Stress level µs.l.(Xv.w.) ÷µs.l.(Xv.s.) and 
Night work µn.w. (Xw.) ÷µn.w.(Xv.s.) it is possible to find the 
values for the corresponding linguistic variables Xs.l. and 
Xn.w.. 

The base (universal) numeric scale is selected 
depending on the nature of the task. For example, the 
Karolinska KSS scale [5] of the somnolence self-
assessment can be 1÷10, while subjective self-assessment 
scales [6] are usually simplified in the 1÷5 range. Other 
parameters, such as human age on a scale corresponding 
to a numeric size of 0÷100. Fig. 2 shows the lowest level 
matching bell shape membership functions [7] and base 
scale 0÷100, or percent scale. 

 
Fig. 2. Non-strict variable membership functions. 

If differential diagnostic tasks [8] are addressed where 
pain levels, s-diagnoses and n-diagnoses are observed 
instead of Nv.w., then the non-strict variable averages can 
be found at the lowest level (1): 

                   𝑁𝑁𝑣𝑣.𝑤𝑤. =
∑ 𝑢𝑢𝑖𝑖∗𝜇𝜇𝑣𝑣.𝑤𝑤.(𝑢𝑢𝑖𝑖)𝑢𝑢𝑖𝑖∈𝑈𝑈

∑ 𝜇𝜇𝑣𝑣.𝑤𝑤.(𝑢𝑢𝑖𝑖)𝑢𝑢𝑖𝑖∈𝑈𝑈
  .                      (1) 

Linguistic averages for Ls.l. and Ln.w. can be found at the 
highest level (2): 

𝐿𝐿𝑠𝑠.𝑙𝑙. =
∑ 𝑁𝑁𝑡𝑡𝜇𝜇𝑠𝑠.𝑙𝑙.(𝑋𝑋𝑡𝑡)𝑋𝑋𝑡𝑡∈𝑇𝑇

∑ 𝜇𝜇𝑠𝑠.𝑙𝑙.(𝑋𝑋𝑡𝑡)𝑋𝑋𝑡𝑡∈𝑇𝑇
;   

                      𝐿𝐿𝑛𝑛.𝑤𝑤. =
∑ 𝑁𝑁𝑡𝑡𝜇𝜇𝑛𝑛.𝑤𝑤.(𝑋𝑋𝑡𝑡)𝑋𝑋𝑡𝑡∈𝑇𝑇

∑ 𝜇𝜇𝑛𝑛.𝑤𝑤.(𝑋𝑋𝑡𝑡)𝑋𝑋𝑡𝑡∈𝑇𝑇
 ,                     (2) 

where T- sets of linguistic values corresponding to Xs.l. and 
Xn.w. parameters; Xt – gradation elements of each set. 

This results in Ψ - selectivity of the parameter (3):  

                               Ψ= 𝐿𝐿𝑠𝑠.𝑙𝑙. −  𝐿𝐿𝑛𝑛.𝑤𝑤.                         (3) 

The fatigue case does not correspond to this 
calculation example when determining which of the 
possible diagnoses is correct. 

In the case of fatigue, the set of all linguistic 
parameters promotes and reflects human fatigue levels 
and can therefore be considered as a vectorial multi-
element criterion. It is proposed to use the fuzzy logic and 
fuzzy control methods. This means that the aggregation 
methods must be applied to obtain the aggregated 
evaluation from all non-strict and linguistic variables that 
serve as the final decision, choosing the following steps 
depending on the degree of fatigue. 

An example calculation is given to this by determining 
the level of fatigue from two linguistic variables. In this 
example, the input parameters are Xs.l. = 81 and Xn.w = 62.  

Stress level (Fig. 3) refers to the term “strong” (s.), 
which corresponds to “stress at work and at home” with 
µs. = 0.9 and to the term “very severe” (v.s.), which 
corresponds to “stress at work and at home for long 
periods” with µv.s. = 0.1. 

 
Fig. 3. Membership functions of parameter “stress level”. 

The expression of night work (Fig. 4) refers to the 
term “moderate” (m.), which corresponds to “weekly” 
with µm. = 0.8 and to the term “strong” (s.), which 
corresponds to “every 4th night” with µs. = 0.2. 

 
Fig. 4. Membership functions of parameter “night work”. 

 The output parameters are the sleep deprivation level 
value and the decision taken on further actions of the 
recommendations. Specific situation is defined, which 
characterizes focus on 4 linguistic gradations and their 
combinations. To formulate the decision for each of the 
situations the experts can formulate the following decision 
rules in the logical rule base given in table 1. 

TABLE 1 PRODUCTION RULE ACTIVATIONS 

Rule No. IF (Xs.l.) AND (Xn.w.) THEN 

R1 µs. = 0.9 µm. = 0.8 Lunch break 

R2 µs. = 0.9 µs. = 0.2 Pause 

R3 µv.s. = 0.1 µm. = 0.8 Lunch break 

R4 µv.s. = 0.1 µs. = 0.2 Lunch break 

 

Four sets of conditions are given, relating to the and 
the logical operator. The minimum rule is used (table 2), 
and the breakdown is (4): 

                      𝜇𝜇𝐴𝐴∧𝐵𝐵 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝜇𝜇𝐴𝐴,, 𝜇𝜇𝐵𝐵,�                       (4) 
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TABLE 2 MINIMUM RULE CALCULATION 

Rule No. Min rule result Decision 

R1 0.8 Lunch break 

R2 0.2 Pause 

R3 0.1 Lunch break 

R4 0.1 Lunch break 

 

 Whereas the three rules (R1, R3, R4) give the same 
decision, but with different linguistic gradations, 
maximum rule must be applied (5): 

                      𝜇𝜇𝐴𝐴∨𝐵𝐵 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝜇𝜇𝐴𝐴,,𝜇𝜇𝐵𝐵,�,                        (5) 

where max (0.8, 0.1, 0,1) = 0.8. 

 Linguistic decision is given (Fig. 5): 

 
Fig. 5. Linguistic decision parameter about further action. 

• decision “Lunch break” with µ = 0.8. 

• decision “Pause” with µ = 0.2.  

Result obtained in the non-strict environment with 
linguistic variables. To find a technical conclusion in 
numerical terms, the strict numerical value needs to be 
resolved, by using defuzzification method. This can be 
done using defuzzification techniques, such as, center of 
sums (COS) [9], center of gravity (COG) [10], mean of 
maximum (MOM) [11]. In this case, the linguistic mean 
method (COS) is used (6): 

                            𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 = ∑ 𝑥𝑥𝑖𝑖𝜇𝜇(𝑥𝑥𝑖𝑖)𝑥𝑥∈𝐴𝐴
∑ 𝜇𝜇(𝑥𝑥𝑖𝑖)𝑋𝑋𝑥𝑥∈𝐴𝐴

,                       (6) 

where A - points characterising, the linguistic conclusion 
obtained as 0.2 and 0.8; L – level of fatigue [%], which is 
calculated as follows (7): 

    𝐿𝐿 = 0.2∗6+0.2∗45+0.8∗45+0.8∗82
2

= 55,9%             (7) 

The resulting decision (Fig. 6) is then checked against the 
value of L=55.9 %, which corresponds to the linguistic 
output class for “Lunch break”.  

 
Fig. 6. Deffusification results in real environment. 

III. RESULTS AND DISCUSSION 
A modular multi-level decision-making system is 

proposed. The overall structure of the decision-making 
system divided into 3 levels (DM1 - determination of 
fatigue components, DM2 - obtaining fatigue assessment, 
DM3 – recommendations), where each layer of decision 
making consists of expert-systems (Fig. 7).  

The rationale for the three-tier decision-making 
system is based on a breakdown of fundamental problems 
addressed by each level of decision-making systems. The 
parameter input for this expert system shall consist of a 
subjective objective component. In the course of the work, 
it has been found that it is not appropriate to apply the 
exact 10 ball scales as they do not correspond to the 
experts' assessment capabilities. Also, it is considered, 
that the quantitative and qualitative input data from 
objective measurements and subjective surveys will need 
to apply separate expert logic and configuration of 
decision-making controller. 

 
Fig. 7. Linguistic decision parameter about further action. 

The first decision making level DM1 uses 
fuzzification to convert each input parameter to 3 grade 
scale corresponding to low (L), medium (M) and high (H). 
It's like a traffic light principle. This decision is also based 
on the fact that the assessment of fatigue is carried out 
under the working conditions of the field of use (the driver 
making the route). Partial values for drowsiness levels 
from input parameter values on discrete ordinal scale L-
M-H are expected to be determined in all input 
information blocks. Fatigue decision component relies on 
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13 subjective inputs and 6 objective inputs which require 
expert validated membership functions in scales. A 
membership function example for human reaction test 
result [ms] (Fig. 8) is converted into reaction time 
linguistic scale with three discrete values [L-M-H]. 

 
Fig. 8. DM1 membership function for reaction time input. 

The subjective input component is divided into two 
logical groups, S1 and S2. Intermediate score S1, or pre-
flight or pre-workout survey, for logically structured 
human survey data. Intermediate score S2 shall be based 
on the selected 4 test activities and their results. 
Intermediate evaluations from these two branches form 
the subjective component's resulting fatigue partial 
decision.  

The logical structure of the decision algorithm for the 
objective mental fatigue component (O) consists of 6 
objective input parameters, which are divided into three 
logical groups and can be obtained respectively between 
the O1 - O3 ratings from physiological sensor data or by 
using machine learning algorithms to process the 
incoming signals into discrete decision inputs. 
Intermediate assessment O1 contains the resulting input 
values of the first group of algorithms to be obtained 
using a simple detector of the relative alpha and beta band 
presence of the electroencephalogram band distribution. 
The eye blink frequency is obtained using either a video 
processing technique [12] or an electroencephalogram-
defined blinking frequency. The intermediate assessment 
O2 contains selected electroencephalogram indices J1- 
involvement in the task and J2 - attention groups of 
indices based on the common characteristics of these two 
indices that characterize human attention. The 
intermediate assessment O3 contains a logical summary of 
the two electroencephalogram indices J3 – stress and J4 – 
alertness, which, by the characteristics of these two 
indices, characterises mental performance [1]. 
Intermediate evaluations from these three branches form 
the objective component’s resulting fatigue partial 
decision. 

For the synthesis of the set of decision laws from 
expert knowledge, it is proposed to use a form that is 
understandable to the person – a table method where the 
relationship between linguistic gradations of input and 
output parameters can be realistically implemented. 
Confirmation of the relationship is the result of an expert 
vote. The criterion of completeness of the knowledge base 
is used to verify that the number of cause-effect laws is 
sufficient to cover all gradation combinations between 
input parameters and exit decision. If the number of laws 
is insufficient, there is a problem in deciding because 
there is no link between any of the gradations in the 
entrance set and the exit decision. Redundancy is created 

if the number of laws is excessive above the measure of 
sufficiency. The number of decision laws for each of the 
expert systems is given in table 3 and in total 76 expert 
decision rules are distributed across 4 expert systems 
(table 3).  

TABLE 3 NUMBER OF DECISION RULES FOR EACH EXPERT MODULE 

 
Expert system Number of expert rules 

DM1 Objective component 27 

DM1 Subjective component 28 

DM2- Fatigue decision  9 

DM3 – Fatigue recommendations 12 

 

The method of defuzzification is proposed to be used 
COG (centre-of -gravity) of parameters in the partial 
decision level DM1 and DM2. However, for conversion 
of final recommendation in DM3 the system uses COS 
(centre-of-sums) method. The exit partial decision for 
each component in DM1 is a linguistic variable with a 
gradation L-M-H that is respectively “low,” “medium,” 
and “high.” And forms the input for DM2 (Fig. 9). 

 
Fig. 9. DM1 partial decision output membership function. 

 Partial decisions at this level from entrance data, and 
the mental fatigue decision DM2, are described in this 
way as the fuzzy variables with three linguistic gradations 
which use normal distribution statistical Gaussian 
distribution for the output membership function of the 
DM2 fatigue level decision (Fig. 10).  

 
Fig. 10. DM2 fatigue level decision output membership function. 

 The expert system structure was modelled by using 
MATLAB Fuzzy Logic Toolbox 2022 and Octave Fuzzy-
logic-toolbox. Decision modules are created in the 
language standard FCL (IEC 61131-7) for the control of 
fuzzy sets. Modular structure or system tree of decision-
making controllers is a function used in this simulation 
environment to model complex decision systems. Each 
expert system decision block can be modelled separately 
by creating the input, output activation functions and the 
production rules so that a FIS object is formed. Mamdani 
Type I expert modules are used in the current architecture. 
The expert modules (FIS objects) then can be linked 
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together, and chained structure called FIS tree, so that the 
next system input receives the previous output decision. 
The formed structure shall be uniform according to the 
characteristics of the modular system. Formally, the tree is 
responsible for the decision levels of DM1 and DM2, 
where the input values are semantic non-rigid values 
processed by algorithms and classifiers. All parameters 
use semantic gradation 3 linguistic classes when 
simplified numerically with values in scale [0÷2]. 
Formally, the complexity of such a tree as a monolith 
block is characterised by 19 input parameters with 3 
gradations with 6852 variations in input data, so it is 
proposed to split decision making into 4 blocks.  

 Each decision controller has one parameter output 
associated with the next module as an input parameter. 
The subjective module combines 3 decision-making 
blocks because, as things stand, individual blocks have 
simplified logic. As the amount of knowledge increases, it 
would be necessary to transform the structure by splitting 
logic into 3 blocks and using a separate decision 
aggregation module. The decision logic of the objective 
component is divided into 4 modules describing the 
processing of input decisions in 3 intermediate blocks and 
the decision aggregation block of the objective 
component.  

Overall, each expert system needs to validate the 
accuracy of decision-making against at least the 
synthesised test data of the base decision tree. The unit 
tests shall, as far as possible, cover the combinations of 
input parameters and exit decision classes (L-M-H) of 
each decision system module. The user interface was 
designed to use all system steps by a human expert and to 
observe the intermediate results for each expert-system 
module. To support the six steps of decision making, the 
following six decision-making expert system modules 
were created: 

• Subjective component, 

• Objective parameter monitoring, 

• Unordinary situation decision module, 

• Fatigue decision, 

• Alerts, 

• Recommendations. 

The expert interface supports three main decision-
making process scenarios: pre-flight survey, monitoring 
scenario during the activity and alert scenario when the 
system controls alert actuators.  In the website expert 
module is interfaced in a separate column and the decision 
chain is linked left to right allowing to transparently 
interact with the system and test the formed decisions in 
each step. Logical examples of combinations executed 
during system testing using the directly created client API 
interface were generated to simulate end-user capabilities 
and the environments used. 

In the MATLAB simulation environment, such 
decisions may have a different result due to differences in 
the implementation of the Fuzzy logic engine, so the 
result was validated at MATLAB first and then compared 
on the realised system through tests. Because expert logic 

is made up of knowledge laws, their testing uses the 
generation of logical combination for the input output 
pairs. The system must produce a decision at any 
combination of these input parameters, which were also 
tested automatically. The baseline criterion for such 
testing per module 0 deviations from the expected 
decision. Table 2 summarises the results of the unit tests: 

TABLE 2 MINIMUM RULE CALCULATION 

Module name Unit test  
count for each module Unit test fault count 

DM1 Objective 
component 

279 0 

DM1 Subjective 
component 200 0 

DM 2 – Mental 
fatigue decision 
component 

9 0 

DM3-
Recommendations 518 0 

Total 1006 0 

 

The purpose of system tests is to check the correct 
functioning of the entire system in three given scenarios 
of driver pre-evaluation. To carry out automated testing of 
these scenarios, it is first necessary to identify the modules 
involved in each scenario. In this case the pre-evaluation 
tests used subjective inputs and the monitoring during 
drive used objective component inputs. Test data, or 
expert system input parameter values, are formed as 
combinations of input data from unit test inputs. 
Validation of system operation is based on the assumption 
that decisions resulting from the combination should be 
consistent with those laid down in the rules of expert 
decisions and appropriate alarm or recommendation 
should be provided at the system exit. So, the number of 
faulty tests must be a total of 0. System tests also feed 
input parameter values that are not defined within the 
formal boundaries of the parameters. The purpose of the 
system is to prevent input of such values or to inform you 
of incorrect parameter assignment. The baseline criterion 
for such testing per module 0 deviations from the 
expected decision. The desired condition was reached 
during testing as a result of 6 iterations over 279 driver 
pre-evaluation tests and 479 monitoring cases with driver 
recommendation.  

IV. CONCLUSIONS 
The following article proposes a transparent multi-

level expert-system modular solution for simplified use by 
domain experts in the domain area of human fatigue 
evaluation. 

The mathematical theories of fuzzy sets and fuzzy 
logic are still relevant topic nowadays and such decision-
making systems are mostly used in areas of expert 
linguistic descriptions and fuzzy logic, the application 
area of medicine expertise requires a transparent decision 
making and models that can be constructed by non-expert 
in machine learning domain.  

For the fatigue evaluation system that is described in 
this article the possible application areas are medical 
treatment institutions for patient rehabilitation, 
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construction companies or hazardous substance providers, 
operator or air traffic controls, sports, educational and 
military institutions.  

 The theoretically feasible system should be divided 
into smaller modules to further exploit the possibilities to 
reduce the complexities of each module and improve the 
performance of the decision-making system during the 
implementation phase. In this case, the timing of the 
simulation decisions does not differ significantly when 
comparing the two structures, so the simulation basically 
uses the possibly simplified structure described in the first 
case. In the further use of the system, it follows from the 
perspective of modulation adaptation that it is necessary to 
implement the finer modules, which can be used 
independently and linked to each other by creating 
structures suitable for other applications. 
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