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Abstract. There is a large number and variety of uncertainties 
that relate to almost all areas of life and the activity of people. 
Based on numerous literature sources, this article classifies 
various uncertainties into the following large groups: (1) 
stochastic uncertainties and (2) numerical uncertainties, 
including fuzzy and possibilistic ones. The article presents 
general approaches to assessing uncertainties in each of these 
groups. In addition, the article presents the main 
characteristics of general uncertainty estimates and provides 
an illustrative example. 

Keywords: uncertainty and information, statistical uncertainty, 
numerical uncertainty, estimation of uncertainty. 

I. INTRODUCTION 
The materials for research in this article are various 

publications on the topics presented. The article is a review 
nature. The presented methods are supplemented with 
illustrative examples. 

The whole world is riddled with various kinds of 
uncertainties. What are the chances of rain tomorrow? How 
long will you have to wait for the tram at the stop? How old 
can a person be who is described as middle-aged? This kind 
of uncertainty can be continued indefinitely. 

To clarify further considerations, we will introduce a 
generalized concept of a system. In the context of this 
article, we will consider information systems that consist of 
variables that represent one or another type of information 
(data). Let us quote from [1], which defines such systems 
and the potential uncertainties associated with them. 

“In general, systems are viewed as relations among 
states of given variables. They are constructed for various 
purposes, such as prediction, retrodiction, extrapolation... 
control, planning, decision-making, scheduling, and 
diagnosis.  In each system, its relation is utilized in each 
purposeful way to determine unknown states of some 
variables based on known states of some other variables.  

Systems in which the unknown states are determined 
uniquely are called deterministic systems; all other systems 
are called nondeterministic systems. Each nondeterministic 
system involves uncertainty of some type. This uncertainty 
pertains to the purpose for which the system was 
constructed. It is thus natural to distinguish predictive 
uncertainty, retrodictive uncertainty... diagnostic 
uncertainty, and so on. In each nondeterministic system, the 
relevant uncertainty must be properly incorporated into the 
description of the system in some formalized language.” 

The key point in this quotation is that relevant 
uncertainties must be identified, displayed, and evaluated 
using appropriate formal language for expressing those 
uncertainties. 

There is a close relationship between the amount of 
information and the uncertainty of this information. The 
absence or insufficiency of existing information usually 
causes uncertainty. In work [1] this connection is presented 
schematically (see Figure 1). 

Action
A Priori uncer-
tainty ( )1U

A Posteriory
uncertainty ( )2U

1 2U U−
Information  

Fig. 1. Schematic representation of the relationship between uncertainty 
and information [1]. 

II. STATISTICAL UNCERTAINTIES 
The best known are stochastic uncertainties. This is the 

field of probability theory and mathematical statistics. 
Uncertainties about the states of relevant variables are 
expressed by probabilistic estimates. 

Let a set of random events { }/ 1,...,= =iE e i n  be 
given and the probabilities of the occurrence of each of 
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these random events { }/ 1,...,ip i n=  estimated. Then the 
probabilistic estimates must satisfy the following axiomatic 
requirements. 

1. 0 1,ip i≤ ≤ ∀ . 
2. If the events are independent of each other, then  
( ) ( ) ( )1 1.... ....n np e e p e p e∪ ∪ = + + . 

3.  If the set E is a complete group of random 

events, then 
1

1
n

i
i

p
=

=∑ . 

The concept of entropy as an estimate of the degree of 
stochastic uncertainty was introduced in [2]. Let a set of 
discrete values of a random variable X be given. Entropy 
as an estimate of the degree of uncertainty in the 
distribution of values X is calculated using the expression: 

       ( ) ( ) ( )2log .
∈

= −∑
i

i ix
H p x p x

Χ
Χ                   (1) 

  where ( )ip x  - the probability of occurrence of value 

ix  variable Χ . 

 Let there be two sets of discrete values of random 
variables Χ and Υ and the probabilities for the values of 
∈ix Χ  to occur depend on the values ∈jy Υ . Then 

conditional  entropy for distribution /Χ Υ is defined as 

    ( ) ( ) ( )2/ / log / ,= −∑ ∑ i j i ji j
H p x y p x yΧ Υ   (2) 

 where ( )/i jp x y - the conditional probability of 

realization of value ix  subject to realization of value .jy  

 If the discrete values of random variables Χ  and Υ  
are distributed independently, then joint entropy of their 
joint distribution is defined as 

 ( ) ( ) ( )2, , log , ,= −∑ ∑ i j i ji j
H p x y p x yΧ Υ     (3) 

 where ( ),i jp x y  is the probability of joint realization 

of values ix  and jy . 

If the values of random variables Χ  and Υ are 
continuous, then the summation operations in expressions 
(1) – (3) are replaced by integration operations. 

When calculating entropy, binary logarithms are 
usually used. The unit of entropy is then called a bit. In 
principle, logarithms with other bases can be used to 
estimate entropy. If logarithms with base e are used, then 
the unit of measurement is nat, if logarithms with base 10 
are used, then the unit of measurement is dit. 

In work [3] the following axiomatic characterization of 
the concept of entropy is given: 

1. Subaddivity: for joint distributed random 
variables ( ) ( ) ( ),H H H≤ +Χ Υ Χ Υ . 

2. Addivity:  ( ) ( ) ( ),H H H= +Χ Υ Χ Υ  when the 
random variables Χ,Υ are independent. 

3. Extensibility:   

( ) ( )1 1 1,..., ,0 ,...,n n n nH p p H p p+ =  - adding an 
outcome with probability zero does not change the 
entropy. 

4. Symmetry: ( )1,...,n nH p p is invariant under 
permutation of 1,..., np p . 

5. Small for small probabilities:    
( )0

lim 1 , 0
q

H q q+→
− → . 

 
Entropy estimates are very widely used in various 

contexts to estimate the degree of uncertainty in statistical 
information. 

III. FUZZY ENTROPY AND FUZZINESS ESTIMATES 
Another large class consists of uncertainties associated 

with numerical estimates. Until the 60s of the 20th century, 
the only type of such uncertainties were measurement 
errors. The measured value was presented in the form 

α±x , where α is the amplitude of possible measurement 
errors. 

In 1965, L. A. Zadeh published his famous work [4], 
which laid the foundation for a new class of uncertainties - 
fuzzy sets and fuzzy numbers. Essentially, fuzzy numbers 
are fuzzy sets defined on some number axis. 

  The emergence of fuzzy set theory necessitated the 
development of new measures. The theory of fuzzy 
estimates was proposed in [5]. These measures, named 
after the author, are called fuzzy Sugeno measures. These 
estimates are determined as follows. 

Let ρ  be an σ -algebra on universe  Χ . A Sugeno 
fuzzy measure is : 0,1ρ   →g , verifying: 

1. ( ) 0∅ =g ,  ( ) 1=g Χ . 

2. If , ρ∈A B and ⊆A B , then ( ) ( )≤g A g B . 
3. If ρ∉nA  and 1 2 ...⊆ ⊄A A then 

( ) ( )lim lim→∞ →∞=n n n ng A g A  . 
 

Property 2 is called monotony and property 3 is called 
Sugeno’s convergence. 

How can the degree of uncertainty associated with the 
original fuzzy information be measured? In this article, we 
will present three types of such measures. 

Let a fuzzy random variable Χ  be given, the values of 
which are triangular normal fuzzy numbers jA . For 
clarity, an example of such a fuzzy number is graphically 
presented in Figure  2. 
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1
( )jAµ 

jA

1x 2x ix nx.. . X

( )
j iA xµ 

 
Fig. 2. Graphical representation of a triangular normal fuzzy number 

jA . 

To estimate the degree of uncertainty of a fuzzy random 
number, A. L. Zadeh in 1965 proposed the following 
extension of Shannon entropy 

       ( ) ( ) ( ) ( )2
1

log
j

n

j i i iA
i

H A x p x p xµ
=

= −∑ 
 ,           (4) 

where ( )
j jA xµ   is the value of the membership 

function of the element ix  to the fuzzy number jA ; 

( )ip x  - probability of element (value) ix  
implementation. 

Points 1 2, ,..., nx x x  in Figure 2 represent the values of 
the fuzzy variable S  in the interval reflecting the basis of 
the fuzzy number  jA . Unless otherwise assumed, the 

distribution of ix  values can be considered to be a uniform 

distribution. Then ( ) 1
ip x

n
= . The ( )iA xµ   values can be 

read from the graph or calculated if the analytical 
expression of function ( )iA xµ    is given. 

If a fuzzy variable S includes m fuzzy numbers  jA , 
then the total fuzzy entropy for the variable S is defined as 
the sum of the fuzzy entropies of the fuzzy numbers 
forming it. 

( ) ( )
1

.
=

=∑ 
m

j
j

H S H A                       (5)                       

In addition to estimates of fuzzy entropy for fuzzy 
random numbers, various estimates of the degree of 
fuzziness for fuzzy numbers have been proposed.    It 
should be kept in mind that estimates of fuzzy entropy and 
estimates of the degree of fuzziness of fuzzy numbers are 
different estimates of the uncertainty of these fuzzy 
numbers.  Fuzzy entropy estimates are analogous to 
Shannon entropy estimates in a fuzzy environment. 
Estimates of the degree of fuzziness are specific estimates 
of uncertainty, which is associated only with the forms of 
membership functions for these fuzzy numbers. 

In this paper, we will present two common estimates of 
the degree of fuzziness for fuzzy numbers. 

De Luca and Termini [6] proposed the following 
estimate of the degree of fuzziness of the fuzzy number A
. To visualize further definitions, Figure 3 graphically 
represents the triangular normal fuzzy number A   and its 
complement A . 

( )µ ⋅

( )Aµ 
1

0

( )Aµ 

X  
Fig. 3. Graphical representation of a triangular normal fuzzy number 

A  and its complement A . 

( ) ( ) ( )j jd A H A H A= +   .                   (6) 

Using Shannon's function 

( ) ( ) ( )ln 1 ln 1S x x x x x= − − − − ,           (7) 
expression (6) can be represented in the following form 

( ) ( )( )
1

.µ
=

= ∑ 


j

n

j iA
i

d A k S x                   (8) 

where k is a positive constant.  

Note that the Shannon function (7) uses natural 
logarithms. This is not of fundamental importance. The 
choice of logarithm base only affects the units of 
measurement of the resulting uncertainty. If you want to 
express the estimated degree of fuzziness in bits, then use 

2log ( )x instead of ln( )x . 

Estimates of the degree of fuzziness De Luca and 
Termini must satisfy the following obvious requirements 
[7]: 

1. ( ) 0=d A  if A is a crisp set in Χ . 

2. ( )d A  assumes a unique maximum if     

   ( ) 1 ,
2

µ = ∀ ∈A x x Χ . 

3. ( ) ( )µ µ
′

≤ A Ax x  if ′A  is “crisper” then A ,  

     i. e.,  ( ) ( )µ µ
′

≤ A Ax x  for ( ) 1
2

µ ≤A x  and 

     ( ) ( )µ µ
′

≥ A Ax x  for ( ) 1
2

µ ≥A x . 

4. ( ) ( )= d A d A  where A  is complement  

     of A . 
 

Another assessment of the degree of fuzziness of a 
fuzzy number A  has the following basis. For a fuzzy 
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number A  and its complement A , in contrast to crisp sets, 
the following statements are not mandatory: 

A A∪ =  Χ ; 

A A∩ =∅  . 
In work [8] R. Yager argues that the assessment of the 

degree of fuzziness for a fuzzy number A  should reflect 
the difference between this number and its complement A . 
In other words, the estimate of the degree of fuzziness 
should be a function of the distance between A  and  A  or 
between ( )µ A x  and ( )µ

A
x . In [8] the author proposed 

the following metric for estimating the distance between A  
and A : 

 ( ) ( ) ( )
1

1
, , 1, 2,...µ µ

=

 = − = 
 
∑  

 
n pp

p i iA A
i

D A A x x p     (9) 

 
This is the Minkowski metric. For 1p =  we have the 

Hamming metric: 

       ( ) ( ) ( )1
1

, .µ µ
=

= −∑  
 

n

i iA A
i

D A A x x               (10) 

If ( ) ( )1µ µ= −  AA
x x  then 

( ) ( )1
1

, 2 1.µ
=

= −∑ 
 

n

iA
i

D A A x               (11) 

 
For 2p =  we have the Euclidian metric: 

( ) ( ) ( )( )
1
22

2
1

, µ µ
=

 = − 
 
∑  

 
n

i iA A
i

D A A x x .     (12) 

If ( ) ( )1µ µ= −  AA
x x  then 

( ) ( )( )
1
22

2
1

, 2 1 .µ
=

 = − 
 
∑ 

 
n

kA
i

D A A x        (13) 

  
There are other definitions of the complement of a 

fuzzy set A . In such cases, the values of ( )µ  iA
x should 

appear explicitly in Expressions (8), (10), which are 
calculated on the basis of the corresponding definition of
A . 

Additional information about fuzzy entropy and fuzzy 
estimates can be found in the works [7], [8],              [9]. 

To model uncertainties greater than those modeled by 
standard fuzzy numbers the following extensions of fuzzy 
numbers have been proposed: 

1. Interval-valued fuzzy numbers [10]. 
2. Fuzzy numbers type-2 [11]. 
3. Interval-valued fuzzy numbers type-2 [12],[13]. 
4. Intuitionistic fuzzy numbers [14]. 

 
In this work, we limit ourselves to considering only 

standard fuzzy numbers. 

Various approaches to combining statistical and fuzzy 
information have been proposed. In this sense, we can talk 
about the probabilities of fuzzy events [15] and fuzzy 
probability estimates. 

IV. POSSIBILITY THEORY AND HARTLEY MEASURE 
To model very high degrees of uncertainty, a possibility 

theory has been proposed [16], [17]. 

Assume that the universe of discourse Ω  is a finite set. 
A possibility measure is a function Π  from 2Ω  to [0,1], 
such that: 

1. ( ) 0;Π ∅ =  

2. ( ) 1;Π Ω =  

3. ( ) ( ) ( )( )max ,Π ∪ = Π ΠU V U V  for any disjoint 
subsets U  and V . 

Let there be a numerical or non-numerical set A , all of 
whose elements are equally possible. The degree of 
uncertainty of this set is estimated based on the Hartley 
function [18] 

( )0 2log=H A A .                        (14) 

where A  denotes the cardinality of the set A . 
To better visualize the difference between fuzzy and 

possibilistic uncertainties, let's look at Figure 4 [19]. Figure 
4 (a) shows a graph of the membership function of a 
triangular normal fuzzy number A . 

For any value ∈ x A , the degree of its membership to 
A , ( )µ A x , is uniquely determined  (vertical arrows in 

Figure 4 (a)). 

 

1 1

X X

( )Aµ  A ( )Aπ A

a) b)
 

Fig. 4. Graphical representation of the triangular normal fuzzy number 

A  (a) and the possibilistic number A  (b). [19] 

Figure 4 (b) shows a graph of the distribution of 
possibilities for the possibilistic number A . For any value 
of ∈x A , the degree of its possibility is determined by the 
horizontal segment of the line connecting the 
corresponding points on the graph ( )π A  (horizontal lines 
in Figure 4 (b)). 

This is the significant difference between fuzzy and 
possibilistic numbers, which are expressions of 
fundamentally different types of numerical uncertainties. 
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V. ILLUSTRATIVE EXAMPLE 
In Figure 5 graphically shows the distribution of three 

fuzzy probabilities ( )1 2 3, ,=   P p p p . 

0
1

1

p

( )µ ⋅ 1p 2p 3p

 
Fig. 5. Graphical representation of the distribution of three fuzzy 
probabilities. 

Required:  

1. Calculate the fuzzy entropy value of this distribution.  

2.   Calculate estimates of the degree of fuzziness of 
fuzzy numbers 1 2 3, ,  p p p  using the expressions (11), 
(13). 

Using the graph of the membership function of a fuzzy 
number ( )1pµ  , we determine the following reference 
values of probability 1p , the corresponding values of the 
membership function ( )1pµ  and the probability of the 

implementation ( )*
1p p  of these reference values: 

1p            0.10     0.15     0.20      0.25     0.30. 

( )1pµ      0.00    0.50     1.00      0.50     0.00. 

( )*
1p p    0.20     0.20     0.20      0.20     0.20. 

The values of  ( )*
1p p  are assigned from the statement 

that the values of 1p  are uniformly distributed on the base 
of a fuzzy number 1p . 

According to expression (4): 

( ) ( )
( )
( )
( )
( )

1 (0.00 0.20 0.699

0.50 0.20 0.699

1.00 0.20 0.699

0.50 0.20 .0699

0.00 0.20 0.699 )
0.000 0.070 0.140 0.070 0.000
0.280.

H p = − ∗ ∗ − +

+ ∗ ∗ − +

+ ∗ ∗ − +

+ ∗ ∗ − +

+ ∗ ∗ − =

= + + + + =
=



 
 

Since the shapes of the graphs of the membership 
functions of the fuzzy probabilities 2 3, p p  are exactly the 
same as for the fuzzy probability 1p , the fuzzy entropy 
estimates for all three fuzzy numbers are the same. 
Therefore, the value of fuzzy entropy for distribution P  

based on the property of additivity of fuzzy entropy 
estimates is equal to: 

( ) 3 0.280 0.840= ∗ =H P . 
According to expression (11): 

( )1, 2 0.00 1 2 0.50 1

2 1.00 1 2 0.50 1 2 0.00 1
1.00 0.00 1.00 0.00 1.00 3.00.

D p p = ∗ − + ∗ − +

+ ∗ − + ∗ − + ∗ − =

= + + + + =

 

 
 

According to expression (13): 

( ) ( )

( )

( )

( )

22
2 1

22

1
2 2

11
22

, ((2 0.00 1) 2 0.50 1

(2 1.00 1) 2 0.50 1

2 0.00 1 )

1.00 0.00 1.00 0.00 1.00 3 1.732.

D p p = ∗ − + ∗ − +

+ ∗ − + ∗ − +

+ ∗ − =

= + + + + = =

 

 

VI. CONCLUSIONS 
This article provides a brief overview of the most 

common types of uncertainty in data. Some uncertainties 
can manifest themselves as phenomena of the external 
world (statistical uncertainties). Another type of 
uncertainty is a consequence of the lack of clear boundaries 
between sets (numbers). 

These types of uncertainties are usually identified as 
fuzzy uncertainties. Possibilistic uncertainties are an 
extreme type of uncertainty when all elements of a certain 
set or numerical values in a given interval are equally 
possible. 

Identifying existing uncertainties in data is very 
important for processing and analyzing these data. In some 
circumstances it is necessary to estimate the degree of 
uncertainty in existing data. This article presents the main 
approaches to assessing various types of uncertainties. 
Definitions of fuzzy entropy and degree of fuzziness are 
presented only for triangular normal fuzzy numbers. It 
should be noted that expressions for calculating fuzzy 
entropy and degree of fuzziness are proposed for all fuzzy 
number extensions mentioned in this paper, as well as for 
other less common fuzzy number extensions. 

Fuzzy entropy’s estimates are widely used to solve 
various kinds of practical problems. Works [20], [21] 
present examples of using fuzzy entropy estimates in 
decision making problems. Works [22], [23] present 
examples of using fuzzy entropy estimates in data analysis 
problems. In work [24], fuzzy entropy estimates are used to 
solve the supplier selection problem. Works [25] – [27] 
present the use of fuzzy entropy in classification and 
clustering problems. 

The general conclusion from this article: in order to 
correctly use uncertain data (information), it is necessary to 
clearly establish the nature of the existing uncertainty and 
use methods suitable for this type of identified uncertainty. 
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