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Abstract. In this paper we consider the temperature and 
laminar flow of an incompressible conducting fluid past a 
non-conducting half-space. For the space approximation the 
finite differences method-finite difference scheme (FDS) and 
finite difference scheme with exact spectrum (FDSES) for 
solving the heat transfer and laminar flow initial boundary-
value problem are used. This procedure allows reducing the 
problem to initial value problem for ordinary differential 
equations and the solution to the problem can be obtained 
numerically and analytically. The equation of the 
temperature is un-depending on the velocity and this 
function we can obtain in analytical form use the integral 
transform methods- Fourier and Laplace transforms.   

Keywords: 1-D MHD problems, FDS and FDSES methods, 
Fourier and Laplace transforms.  

 

I. INTRODUCTION 
Nature of fluids, hydrodynamics, differential 

equations, dimensional analysis, viscous flows and 
mathematical theory of fluid motion, useful in 
applications to both hydrodynamics is described in [6], 
[5]. Effective finite difference and conservative averaging 
methods for solving problems of mathematical physics 
are described in [16].   

The distribution of electromagnetic fields, forces and 
temperature induced by the system of the alternating 
electric current in the conducting cylinder has been 
calculated in [15]. 

The 3-D MHD problem is analysed numerically in 
[13] and for solving of MHD problem of viscous 
incompressible fluid the special monotonous difference 

schemes (FDS, FDSES and others) have been developed 
in [14]. 

Using the hydrodynamics, magnetohydrodynamics 
(MHD) and heat transfer aspect [4], [8], [7], [9], [3] we 
consider simple problem of the laminar flow of an 
incompressible conducting fluid past a non-conducting 
space y∈(-∞; +∞). 

The fluid flows through this space and in contact with 
the plane xz-plane. A constant magnetic field of strength 
𝐻𝐻0  acts in the z-direction. The magnetics Reynolds 
number of the flow 𝑅𝑅𝑚𝑚  is assumed to be small [8]. Under 
these conditions all the considered functions at a given 
point in the space depend only on its y-coordinate and 
time 𝑡𝑡 ∈ [0, 𝑡𝑡𝑓𝑓] (𝑡𝑡𝑓𝑓  is the final time) and 𝑉𝑉 =
(𝑢𝑢(𝑦𝑦, 𝑡𝑡), 0,0) is the vector velocity of the fluid with one 
component in x-direction. 

The solutions of some problems of partial differential 
equations (PDE) with PBCs are obtained, using the 
method of lines (MOL) to approach the PDEs in the time 
and for discretization them in the space, applying the 
finite difference scheme with central differences of a 
second order of the approximation (FDS) and the finite 
difference scheme with the exact spectrum (FDSES).  

 

II. MATERIALS AND METHODS 
In the present chapter the dimensional and 

dimensionless problems are considered. For this purpose, 
the integral transform methods, FDS and FDSES 
methods for solving the heat transfer problem and the 
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problem of the laminar flow of an incompressible 
conducting fluid velocity is studied. 

 
 A. The Dimensional Problems 
Being based on the above-mentioned assumptions, we 

have [5]: 

1) the magnetic induction has one non-vanishing 
component 𝐵𝐵𝑧𝑧 = μ𝐻𝐻0 = 𝐵𝐵0 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 

2) the Lorentz force 𝐹𝐹 = 𝐽𝐽𝐽𝐽𝐵𝐵 has one component in x-
direction is 𝐹𝐹𝑥𝑥 = −σ𝐵𝐵02𝑢𝑢, 

3) the compatibility relation is ρ∞ − ρ = ρβ0(𝑇𝑇 − 𝑇𝑇∞), 

4) the equation of motion  

∂𝑢𝑢
∂𝑡𝑡

= ν
∂2𝑢𝑢
∂𝑦𝑦2

+ 𝑔𝑔β0(𝑇𝑇 − 𝑇𝑇∞) −
σ𝐵𝐵02

ρ
𝑢𝑢, 

5) the energy or heat equation with the source term 

ρ𝐶𝐶𝑝𝑝
∂𝑇𝑇
∂𝑡𝑡

= 𝑘𝑘
∂2𝑇𝑇
∂𝑦𝑦2

+ 𝑄𝑄, 

6) let us introduce the following non-dimensional 
variables: 

𝑦𝑦′ =
𝑈𝑈
ν
𝑦𝑦, 𝑡𝑡′ =

𝑈𝑈2

ν
𝑡𝑡,𝑢𝑢′ =

𝑢𝑢
𝑈𝑈

, 𝑝𝑝𝑟𝑟 =
𝐶𝐶𝑝𝑝ν
𝑘𝑘ρ

, 

𝑀𝑀 = 𝜈𝜈𝜈𝜈𝐵𝐵0
2

𝜌𝜌𝑈𝑈2
, 𝑄𝑄′ = 𝜈𝜈2𝑄𝑄

𝑘𝑘𝑇𝑇0𝑈𝑈2
, 𝑇𝑇′ = 𝑇𝑇−𝑇𝑇∞

𝑇𝑇0
, 

𝐺𝐺𝐺𝐺 =
νβ0𝑔𝑔(𝑇𝑇 − 𝑇𝑇∞)

𝑈𝑈3 . 

Here 𝜌𝜌, H, B, J,𝛽𝛽0,𝐶𝐶𝑝𝑝, 𝑘𝑘,𝜎𝜎,𝑄𝑄, 𝜈𝜈,𝑔𝑔   are fluid density, 
vectors of magnetic field intensity, magnetic induction, 
conduction electric density, coefficient of volume 
expansion, specific heat at constant pressure, thermal 
conductivity, electric conductivity, intensity of the 
applied heat source, kinematics viscosity, acceleration 
due to gravity, 𝑇𝑇∞,𝑇𝑇𝑤𝑤 ,𝑇𝑇0 = 𝑇𝑇𝑤𝑤 − 𝑇𝑇∞  are temperature of 
the fluid away from the plane surface, temperature of the 
plane surface, reference temperature, 𝑝𝑝𝑟𝑟 ,𝐺𝐺𝐺𝐺,𝑀𝑀  are 
Prandtl, Grashof and Magnetic (Stewart) numbers. This is 
the well-known Boussinesq approximation. 

We shall consider a point-type heat source of the 
form 𝑄𝑄 = 𝑄𝑄0δ(𝑦𝑦)𝐻𝐻(𝑡𝑡),  where δ(y),𝐻𝐻(𝑡𝑡) are δ - Dirac 
and Heaviside functions. 

 
B. The Dimensionless Problem 

 
The dimensionless problem for heat transfer and 

velocity equations is: 

 

⎩
⎪
⎨

⎪
⎧𝑝𝑝𝑟𝑟

∂𝑇𝑇(𝑦𝑦, 𝑡𝑡)
∂𝑡𝑡

=
∂2𝑇𝑇(𝑦𝑦, 𝑡𝑡)
∂𝑦𝑦2

+ 𝑄𝑄0δ(𝑦𝑦)𝐻𝐻(𝑡𝑡),𝑦𝑦 ∈ (−∞,∞), 𝑡𝑡 > 0,

∂𝑢𝑢(𝑦𝑦, 𝑡𝑡)
∂𝑡𝑡

=
∂2𝑢𝑢(𝑦𝑦, 𝑡𝑡)
∂𝑦𝑦2 + 𝐺𝐺𝐺𝐺𝑇𝑇(𝑦𝑦, 𝑡𝑡) −𝑀𝑀𝑢𝑢(𝑦𝑦, 𝑡𝑡),

𝑇𝑇(𝑦𝑦, 0) = 𝑢𝑢(𝑦𝑦, 0) = 0,𝑢𝑢(±∞, 𝑡𝑡) = 𝑇𝑇(±∞, 𝑡𝑡) = 0.

(1) 

The equation of the temperature is un-depending on 
the velocity and this function we can obtain in analytical 
form use the integral transformation methods. We can 
also use FDS method by ±∞ ≈ ±𝐿𝐿, where approximately 
𝐿𝐿 = 5. 

 
C. The Integral Transform Method for Solving of Heat 

Transfer Problem 
 
Using the integral Fourier transform [2] 𝑇𝑇∗(𝑘𝑘, 𝑡𝑡) =

(2π)−0.5 ∫ 𝑇𝑇(𝑦𝑦, 𝑡𝑡)∞
−∞ exp(−𝑖𝑖𝑘𝑘𝑦𝑦) 𝑑𝑑𝑦𝑦 

we obtain 
𝑝𝑝𝑟𝑟

𝜕𝜕𝑇𝑇∗(𝑘𝑘,𝑡𝑡)
𝜕𝜕𝑡𝑡

= −𝑘𝑘2𝑇𝑇∗(𝑘𝑘, 𝑡𝑡) + 𝑄𝑄0𝐻𝐻(𝑡𝑡)/√2𝜋𝜋, 𝑘𝑘 ∈
(−∞,∞), 𝑡𝑡 > 0                                                      (2) 
The solution by 𝑇𝑇∗(𝑦𝑦, 0) = 0 is 

𝑇𝑇∗(𝑘𝑘, 𝑡𝑡) = 𝑄𝑄0
√2𝜋𝜋

1−exp�−𝛼𝛼𝑘𝑘2�
𝑘𝑘2

,                               (3) 

where 𝛼𝛼 = 𝑡𝑡
𝑝𝑝𝑟𝑟

. 
This solution we can obtain also with Laplace 

transform 

𝑇𝑇∗(𝑦𝑦, 𝑐𝑐) = � 𝑇𝑇(𝑦𝑦, 𝑡𝑡)
∞

0
exp(−𝑐𝑐𝑡𝑡) 𝑑𝑑𝑡𝑡. 

Then from equation (1) follows 

 

𝑝𝑝𝑟𝑟𝑐𝑐𝑇𝑇∗(𝑦𝑦, 𝑐𝑐) =
𝜕𝜕2𝑇𝑇∗(𝑦𝑦, 𝑐𝑐)

𝜕𝜕𝑦𝑦2
+ 𝑄𝑄0𝛿𝛿(𝑦𝑦)/𝑐𝑐 

and from Fourier transform we get   

𝑝𝑝𝑟𝑟𝑐𝑐𝑇𝑇∗∗(𝑘𝑘, 𝑐𝑐) = −𝑘𝑘2𝑇𝑇∗∗(𝑘𝑘, 𝑐𝑐) +
𝑄𝑄0
√2𝜋𝜋𝑐𝑐

 

or  

𝑇𝑇∗∗(𝑘𝑘, 𝑐𝑐) =
𝑄𝑄0

√2π𝑐𝑐(𝑝𝑝𝑟𝑟𝑐𝑐 + 𝑘𝑘2)
. 

Using the inverse Laplace transform we obtain (3). 

With the inverse Fourier transform  
𝑇𝑇(𝑦𝑦, 𝑡𝑡)

= (2𝜋𝜋)−0.5 𝑄𝑄0
√2𝜋𝜋

�
1 − exp(−𝛼𝛼𝑘𝑘2)

𝑘𝑘2
∞

−∞
exp(𝑖𝑖𝑘𝑘𝑦𝑦) 𝑑𝑑𝑘𝑘 

we get 
 

𝑇𝑇(𝑦𝑦, 𝑡𝑡) = 𝑄𝑄0
√2𝜋𝜋

�2
𝜋𝜋
𝐹𝐹(𝛼𝛼), where  

𝐹𝐹(𝛼𝛼) = ∫ 1−exp�−𝛼𝛼𝑘𝑘2�
𝑘𝑘2

∞
0 cos(𝑘𝑘𝑦𝑦) 𝑑𝑑𝑘𝑘,𝐹𝐹(0) = 0.     

Using derivation with respect to parameter α  we 
obtain the known integral    
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𝐹𝐹′(𝛼𝛼) = ∫ exp(−𝛼𝛼𝑘𝑘2)∞
0 cos(𝑘𝑘𝑦𝑦) 𝑑𝑑𝑘𝑘 = � 𝜋𝜋

4𝛼𝛼
exp�−𝑦𝑦2/

(4𝛼𝛼)�  or 

𝐹𝐹(𝛼𝛼) = �𝜋𝜋/4∫
exp�−𝑦𝑦2/(4𝜉𝜉)�

�𝜉𝜉
𝛼𝛼
0 𝑑𝑑𝑑𝑑.  

With transformation 𝑐𝑐 = 𝑦𝑦2

4𝜉𝜉
 follows: 

 𝐹𝐹(𝛼𝛼) = �𝜋𝜋
16

|𝑦𝑦| ∫ exp(−𝑠𝑠)
𝑠𝑠1.5

∞
𝑦𝑦2/(4𝛼𝛼) 𝑑𝑑𝑐𝑐. 

 
Using the integration by parts 

�𝑣𝑣 𝑑𝑑𝑢𝑢 = 𝑢𝑢𝑣𝑣 − �𝑢𝑢 𝑑𝑑𝑣𝑣,𝑑𝑑𝑢𝑢 = 𝑐𝑐−1.5𝑑𝑑𝑐𝑐, 

𝑣𝑣 = 𝑒𝑒𝐽𝐽𝑝𝑝(−𝑐𝑐), 
𝑑𝑑𝑣𝑣 = −𝑒𝑒𝐽𝐽𝑝𝑝(−𝑐𝑐)𝑑𝑑𝑐𝑐,𝑢𝑢 = −2𝑐𝑐−0.5, we obtain 

𝐹𝐹(α) = �
π

16
|𝑦𝑦| �4√α exp�−

𝑦𝑦2

4α� /|𝑦𝑦|

− 2�
exp(−𝑐𝑐)
𝑐𝑐0.5

∞

𝑦𝑦2/(4α)
𝑑𝑑𝑐𝑐�. 

Therefore, we have obtained the analytical solution in 
the form: 

𝑇𝑇(𝑦𝑦, 𝑡𝑡) = 𝑄𝑄0�2/π��
𝑡𝑡

2𝑝𝑝𝑟𝑟
exp�−

𝑦𝑦2𝑝𝑝𝑟𝑟
4𝑡𝑡 �

− |𝑦𝑦|�
π
8
𝑒𝑒𝐺𝐺𝑒𝑒𝑐𝑐 �|𝑦𝑦|�

𝑝𝑝𝑟𝑟
4𝑡𝑡��, 

𝑒𝑒𝐺𝐺𝑒𝑒𝑐𝑐(𝑢𝑢) = 2
√𝜋𝜋
∫ exp(−𝑑𝑑2)𝑑𝑑∞
𝑢𝑢 𝑑𝑑.  

 
D. The FDS and FDSES Methods and the Solution of 

the Heat Transfer Problem 
 

We can construct the FDSES when in the 
representation for FDS, 𝐴𝐴 = 𝑊𝑊𝑊𝑊𝑊𝑊  the diagonal 
elements of matrix 𝑊𝑊 are replaced with the eigenvalues 
from the differential problem [11], [12]. 
For obtaining the temperature and velocity we consider 
uniform grid in the space 𝑦𝑦𝑗𝑗 = 𝑗𝑗ℎ − 𝐿𝐿, 𝑗𝑗 = 0, 2𝑁𝑁,𝑁𝑁ℎ = 𝐿𝐿. 

Using the finite differences of second order 
approximation for partial derivatives of second order 
respect to 𝑦𝑦  we obtain from the first equation of (1) the 
initial value problem for system of ODEs in the following 
matrix form 

�̇�𝑉(𝑡𝑡) + 1
𝑝𝑝𝑟𝑟
𝐴𝐴𝑉𝑉(𝑡𝑡) = 𝑄𝑄0

𝑝𝑝𝑟𝑟ℎ
,𝑉𝑉(0) = 0                      (4) 

where  𝐴𝐴 is the 3-diagonal matrix of 2𝑁𝑁 − 1 order in the 
form  

𝐴𝐴 =
1
ℎ2

∙ [ −1;  2;  −1 ], 

𝑉𝑉(𝑡𝑡), �̇�𝑉(𝑡𝑡) are the column-vectors of 2𝑁𝑁 − 1 order with 

elements  𝑣𝑣𝑗𝑗(𝑡𝑡)  ≈ 𝑇𝑇(𝑦𝑦𝑗𝑗 , 𝑡𝑡)),  𝑣𝑣�̇�𝚥(𝑡𝑡) ≈
𝜕𝜕𝑇𝑇�𝑦𝑦𝑗𝑗,𝑡𝑡�

𝜕𝜕𝑡𝑡
,   𝑗𝑗 =

1,2𝑁𝑁 − 1. 

The expression of the vector 𝐴𝐴𝑣𝑣 can be represented in 
following way 

𝐴𝐴𝑣𝑣𝑗𝑗 = −�𝑣𝑣𝑗𝑗+1 − 2𝑣𝑣𝑗𝑗 + 𝑣𝑣𝑗𝑗−1�/ℎ2, 𝑗𝑗 = 1,2𝑁𝑁 − 1,    (5)  
 

where 𝑣𝑣  is the column-vector of 2𝑁𝑁 − 1  order with 
elements  

𝑣𝑣𝑗𝑗 , 𝑗𝑗 = 1,2𝑁𝑁 − 1, 𝑣𝑣0 = 𝑣𝑣2𝑁𝑁 = 0. 

Using two vectors 𝑣𝑣1, 𝑣𝑣2 scalar product  

[𝑣𝑣1, 𝑣𝑣2] = ℎ �� 𝑣𝑣𝑗𝑗1𝑣𝑣𝑗𝑗2
2𝑁𝑁−1

𝑗𝑗=1

� 

it is possible to prove, that the operator 𝐴𝐴 is symmetrical 
and [𝐴𝐴𝑦𝑦, 𝑦𝑦] ≥ 0  [1]. 

The corresponding discrete spectral problem 𝐴𝐴𝑤𝑤𝑘𝑘 =
μ𝑘𝑘𝑤𝑤𝑘𝑘 , 𝑘𝑘 = 1,2𝑁𝑁 − 1  have following solution 𝜇𝜇𝑘𝑘 =
4
ℎ2

sin2 𝑘𝑘𝜋𝜋
4𝑁𝑁

 (elements of the matrix 𝑊𝑊 ), 𝑤𝑤𝑖𝑖 ,𝑗𝑗 = �2
𝐿𝐿

sin 𝜋𝜋𝑖𝑖𝑗𝑗
2𝑁𝑁

, 

𝑖𝑖, 𝑗𝑗 = 1,2𝑁𝑁 − 1 (elements of the symmetrical matrix 𝑊𝑊). 

Using the usual scalar product of two vectors for 
eigenvectors without the step ℎ,  

(𝑤𝑤𝑘𝑘 ,𝑤𝑤𝑚𝑚) = ∑ 𝑤𝑤𝑗𝑗𝑘𝑘𝑤𝑤2𝑁𝑁−1
𝑗𝑗=1 𝑗𝑗

𝑚𝑚 = δ𝑘𝑘,𝑚𝑚 , 𝑤𝑤𝑗𝑗𝑘𝑘 =

𝐶𝐶𝑘𝑘 sin�𝑘𝑘𝜋𝜋(𝑗𝑗ℎ + 𝐿𝐿)/(2𝐿𝐿)�, we get 𝐶𝐶𝑘𝑘 = �2ℎ
2𝐿𝐿

= �1
𝑁𝑁

. 

The solution of discrete boundary value problem 
𝐴𝐴𝑣𝑣 = 𝑒𝑒, 𝑣𝑣(−𝐿𝐿) = 𝑣𝑣(𝐿𝐿) = 0,  or of the finite difference 
scheme (FDS) with second order of approximation for 
the boundary value problem of differential equation (1D 
Poisson equation) −𝑢𝑢′′(𝑦𝑦) = 𝑒𝑒(𝑦𝑦),𝑢𝑢(−𝐿𝐿) = 𝑢𝑢(𝐿𝐿) = 0, 

we can write in following form 𝐴𝐴𝑣𝑣 = 𝑊𝑊𝑊𝑊𝑊𝑊 𝑣𝑣 = 𝐹𝐹 , 
where 𝐹𝐹 is the column-vector of 𝑒𝑒�𝑦𝑦𝑗𝑗�, 𝑗𝑗 = 1,2𝑁𝑁 − 1. 

The solution of discrete boundary value problem 
𝐴𝐴𝑣𝑣 = 𝑒𝑒, 𝑣𝑣(−𝐿𝐿) = 𝑣𝑣(𝐿𝐿) = 0,  or of the finite difference 
scheme (FDS) with second order of approximation for 
the boundary value problem of differential equation (1D 
Poisson equation) −𝑢𝑢′′(𝑦𝑦) = 𝑒𝑒(𝑦𝑦),𝑢𝑢(−𝐿𝐿) = 𝑢𝑢(𝐿𝐿) = 0, 

we can write in following form 𝐴𝐴𝑣𝑣 = 𝑊𝑊𝑊𝑊𝑊𝑊 𝑣𝑣 = 𝐹𝐹 , 
where F is the column-vector of 𝑒𝑒�𝑦𝑦𝑗𝑗�, 𝑗𝑗 = 1,2𝑁𝑁 − 1. 
The solution of the spectral problem for the 
corresponding differential problem −𝑤𝑤′′(𝑦𝑦) =
λ𝑤𝑤(𝑦𝑦),𝑤𝑤(0) = 𝑤𝑤(2𝐿𝐿) = 0 is in following form: 

𝑤𝑤𝑘𝑘(𝑦𝑦) = �2
𝐿𝐿

sin 𝑘𝑘π𝑦𝑦
2𝐿𝐿

, λ𝑘𝑘 = �𝑘𝑘π
2𝐿𝐿
�
2
, (𝑤𝑤𝑘𝑘 ,𝑤𝑤𝑚𝑚)∗ =

∫ 𝑤𝑤𝑘𝑘(𝑦𝑦)𝑤𝑤𝑚𝑚(𝑦𝑦)𝑑𝑑𝑦𝑦𝐿𝐿
0 = δ𝑘𝑘,𝑚𝑚. 

We can construct the FDSES when in the 
representation 𝐴𝐴 = 𝑊𝑊𝑊𝑊𝑊𝑊  the diagonal elements of 
matrix 𝑊𝑊 are replaced with the eigenvalues 𝜆𝜆𝑘𝑘  from the 
differential problem. Then the matrix 𝐴𝐴 is not in the 3-
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diagonal form but this is full matrix and 𝑊𝑊𝑊𝑊 =
𝐸𝐸,𝑊𝑊−1 = 𝑊𝑊,𝐴𝐴 = 𝑊𝑊𝑊𝑊𝑊𝑊 , where 𝑊𝑊 = 𝑑𝑑𝑖𝑖𝑑𝑑𝑔𝑔(𝜆𝜆𝑘𝑘).  

The solution of the equation 𝑊𝑊𝑊𝑊𝑊𝑊𝑣𝑣 = 𝐹𝐹  we can 
obtain in the form 𝑣𝑣 = 𝑊𝑊𝑊𝑊−1𝑊𝑊𝐹𝐹 or 𝑣𝑣 = 𝐴𝐴−1. 

 
E. The FDS and FDSES Methods for Solving the 

Velocity of a Laminar Flow of an Incompressible Fluid 
 

Using the finite differences of second order 
approximation (FDS) for partial derivatives of second 
order respect to 𝑦𝑦 we obtain from the second equation of 
(1) the initial value problem for system of ODEs in the 
following matrix form 

�̇�𝑈(𝑡𝑡) + 𝐴𝐴𝑈𝑈(𝑡𝑡) + 𝑀𝑀𝑈𝑈(𝑡𝑡) = 𝐺𝐺𝐺𝐺𝑉𝑉(𝑡𝑡),𝑈𝑈(0) = 0,     (6) 
 
where 𝐴𝐴 is the 3-diagonal matrix of 𝑁𝑁 − 1 order, 
𝑈𝑈(𝑡𝑡), �̇�𝑈(𝑡𝑡),𝑉𝑉(𝑡𝑡) are the column-vectors of 2𝑁𝑁 − 1 order 
with elements  

𝑢𝑢𝑗𝑗(𝑡𝑡)  ≈ 𝑢𝑢(𝑦𝑦𝑗𝑗(𝑡𝑡)), 𝑢𝑢�̇�𝚥(𝑡𝑡) ≈
𝜕𝜕𝑢𝑢�𝑦𝑦𝑗𝑗,𝑡𝑡�

𝜕𝜕𝑡𝑡
, 𝑗𝑗 = 1,𝑁𝑁 − 1, 𝑣𝑣𝑗𝑗(𝑡𝑡)  ≈

𝑇𝑇(𝑦𝑦𝑗𝑗(𝑡𝑡)), 𝑗𝑗 = 1,2𝑁𝑁 − 1. 

The solution with FDSES method is obtained in the 
representation 𝐴𝐴 = 𝑊𝑊𝑊𝑊𝑊𝑊  where the diagonal elements 
of matrix 𝑊𝑊 are replaced with the eigenvalues λ𝑘𝑘 from the 
differential problem. 

Systems of ODEs (4), (6) are solved with Matlab 
routine ''ode15s''. 

 

III. RESULTS AND DISCUSSION 
 

In the present chapter we have solved the 1-D 
boundary value problem for Poisson equation, and have 
calculated the temperature and velocity of the non-
compressible liquid flowing under the influence of the 
magnetic field. 

The solution of 1-D Poisson equation (chapter D) for 
function 𝑒𝑒(𝑦𝑦) = 𝜋𝜋2𝑐𝑐𝑖𝑖𝑐𝑐(𝜋𝜋(𝑦𝑦 + 𝐿𝐿)/2)  is in the form 
𝑣𝑣(𝑦𝑦) = −4𝑐𝑐𝑖𝑖𝑐𝑐(𝜋𝜋(𝑦𝑦 + 𝐿𝐿)/2). 

We have for 𝑦𝑦 ∈ [−𝐿𝐿, 𝐿𝐿],𝑦𝑦(−𝐿𝐿) = 𝑦𝑦(𝐿𝐿) = 0,𝑁𝑁 =
20  following maximal errors 𝐸𝐸𝑟𝑟 : 𝐸𝐸𝑟𝑟𝐹𝐹𝑊𝑊𝐹𝐹 = 0.0518  for 
FDS and 𝐸𝐸𝑟𝑟𝐹𝐹𝑊𝑊𝐹𝐹𝐸𝐸𝐹𝐹 = 10−14 for FDSES see (Fig. 1., Fig. 
2.). In the Fig. 2. the error 𝐸𝐸𝑟𝑟𝐹𝐹𝑊𝑊𝐹𝐹 is compared with the 
error 𝐸𝐸𝑟𝑟𝑀𝑀𝑑𝑑𝑡𝑡, obtaineed by matrix A solutions Av=F in 
the form 𝑣𝑣 = 𝐴𝐴−1𝐹𝐹. 

 

 
Fig. 1. The error for FDSES by N=20, L=5. 

 

 
Fig. 2. The error for FDS and for matrix solution 

by N=20, L=5. 
 

The solutions for temperature and velocity for 𝑁𝑁 =
40,𝑄𝑄0 = 1,𝐺𝐺𝐺𝐺 = 10,𝑀𝑀 = 1, 𝑝𝑝𝑟𝑟 = 0.71, 𝑡𝑡𝑓𝑓 = 2  using 
Matlab are obtained with following results: 

a) the maximal values for temperature by FDS 
method 𝑚𝑚𝑑𝑑𝐽𝐽�𝑇𝑇𝑎𝑎𝑝𝑝𝑟𝑟�  and by analytical (exact) 
method 𝑚𝑚𝑑𝑑𝐽𝐽(𝑇𝑇𝑒𝑒𝑥𝑥)  are: 𝑚𝑚𝑑𝑑𝐽𝐽�𝑇𝑇𝑎𝑎𝑝𝑝𝑟𝑟� = 0.9456 , 
𝑚𝑚𝑑𝑑𝐽𝐽(𝑇𝑇𝑒𝑒𝑥𝑥) = 0.9469; 

b) the maximal values for velocity using FDS 
method 𝑚𝑚𝑑𝑑𝐽𝐽(𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹)  and by using FDSES 
method 𝑚𝑚𝑑𝑑𝐽𝐽(𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)  are: 𝑚𝑚𝑑𝑑𝐽𝐽(𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹) =
0.0310, 𝑚𝑚𝑑𝑑𝐽𝐽(𝑢𝑢𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) = 0.0311. 

The solutions of the temperature T(y,t) , 𝑡𝑡 ∈ �0, 𝑡𝑡𝑓𝑓� 
and 𝑡𝑡 = 𝑡𝑡𝑓𝑓  are represented in Fig. 3.-Fig. 6., the 
corresponding solutions of velocity u(y,t) are represented 
in Fig. 7.-Fig. 10. 

 
Fig. 3. The solutions 𝑇𝑇(𝑦𝑦, 2) depending on 𝑦𝑦. 
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Fig. 4. The exact solutions 𝑇𝑇(𝑦𝑦, 𝑡𝑡) depending on 𝑡𝑡. 

 

 
Fig. 5. The exact solutions 𝑇𝑇(𝑦𝑦, 𝑡𝑡) depending 

on 𝑦𝑦 and 𝑡𝑡. 
 
 
 
 
 

 
Fig. 6. The approximate solutions 𝑇𝑇(𝑦𝑦, 𝑡𝑡) 

depending on  𝑦𝑦 and 𝑡𝑡. 
 

 
Fig. 7. The FDSES solutions 𝑢𝑢(𝑦𝑦, 𝑡𝑡) 

depending on 𝑡𝑡. 
 

 
Fig. 8. The FDSES solutions 𝑢𝑢(𝑦𝑦, 𝑡𝑡) depending 

on 𝑦𝑦 and 𝑡𝑡. 
 

 
Fig. 9. The FDS solutions 𝑢𝑢(𝑦𝑦, 𝑡𝑡) depending 

on 𝑡𝑡. 
 
 

 
Fig. 10. The FDS solutions 𝑢𝑢(𝑦𝑦, 𝑡𝑡) depending 

on 𝑦𝑦 and 𝑡𝑡. 
 

We can see that the maximal values of temperature 
and velocity are concentrated around the point y=0. In the 
Fig. 11 the table (Tab) of maximum values u(y,t) 
depending on Gr and M for the values (1,2. . .10), 𝑄𝑄0 =
1, is presented. It is apparent that velocity decreases if M 
increases and velocity is growing up if Gr and 
temperature increases. In turn, the temperature is growing 
up with increasing 𝑄𝑄0 , for example, if 𝑄𝑄0 = 10 , then 
𝑚𝑚𝑑𝑑𝐽𝐽(𝑇𝑇𝑒𝑒𝑥𝑥) = 9.470 
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Fig. 11. The maximal values (Tab) of FDSES 

solutions for  𝑢𝑢(𝑦𝑦, 𝑡𝑡) depending on M, Gr. 
 

IV. CONCLUSIONS 
1. The approximation of corresponding initial boundary 
value problem of the system of PDEs is based on the 
finite difference schemes FDS and FDSES.  

2. The solutions of temperature and velocity have been 
obtained depending on time and space parameters. 

3. The max absolute value of difference between 
corresponding numerical and analytical solutions of 
velocity was approximately 0.1%. 

4. The velocity and temperature have symmetrical profile 
depending on y, the maximum of temperature and 
velocity is concentred around the point y=0. 

5. The solutions obtained by the MHD problems studied 
illustrate the simplicity and flexibility of the finite 
difference schemes FDS and FDSES in terms of their 
applicability and accuracy. 

6. The system of parabolic type equations has been 
solved depending on time using Matlab routine ''ode15s''. 
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