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Abstract. The modelling of the thermal process is used as a 
tool in determination of the properties of the materials, 
subject to welding. One of the most important steps in the 
modelling is the calibration of the heat source model. This is 
a necessary condition for a given model to be used to solve 
practical problems. The standard practice in this regard is to 
calibrate the model by the shape of the melted zone or by the 
temperature cycles at set points. In the present work, the heat 
source model calibration based on the maximum 
temperatures measured at several surface points, at different 
distances from the seam line, is considered. The temperature 
cycles in the welded joint and the penetration depth were 
assumed by the model, calibrated in such non-destructive 
way. The calculated temperature cycles were compared with 
records of the temperature during welding. The actual 
penetration depth was measured by metallographic 
examination of samples and compared with the assumed 
penetration depth. The obtained results make it possible to 
evaluate the suitability of the proposed methodology for 
determining the cooling rate in the heat affected zone. 

Keywords: heat source calibration, thermal cycles, welding. 

I. INTRODUCTION 
For the practical use of the various welding thermal 

processes models is necessary to calibrate, validate and 
verify them. The calibration of the model is realized by 
determination of parameters involved in the definition of 
the heat source, by comparing experimental and 
computational results. From this point of view, it is 
important that the process can be carried out through simple 
and quickly realizable experiments. In this study, it is 
proposed to use the maximum temperatures measured on 
the surface of the welded parts as such. Measuring of these 

temperatures is done in proximity to the weld seam. In 
addition to the maximum temperatures, it is necessary to 
measure the distance from the seam line to the temperature 
measurement point. It is obvious that one of the isotherm 
lines, with temperature of the solidus, is located at the seam 
edge. The distance to the axis of the seam is equal to half 
of its width.  

The main types of heat source models describing the 
interaction of the welding arc and the article are volumetric 
[1] ÷ [12], surface [13] ÷ [21] or a combination of both 
types [22] ÷ [25]. From the volumetric heat sources the 
Goldak’s model is most often used:  
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Here U  is the welding voltage, I  – arc current and η  
– efficiency. Since ( )rfff aaaf +=  and 

( )rfrr aaaf +=  it has 4 parameters that can be used for 
calibration – baa rf ,, . and .c  

Both volumetric and surface heat sources are defined in 
a movable coordinate system related to the welding arc. 
Surface heat sources are based on a Gaussian distribution 
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II. MATERIALS AND METHODS 
In this study, the experiments were conducted by TIG 

welding. The process parameters are: welding current 180 
A; arc voltage – 12.6 V; welding speed – 10 cm/min. The 
sample for conducting the experiment is made of steel 
S355JR with dimensions 6x240x250 mm. During the 
implementation of the process, temperature cycles were 
recorded at two points located at different distances from 
the seam line (Fig.1). The distance from the first point to 
the seam line is 7.7mm, and from the second - 9.7 mm. 
From these records the maximum temperatures at these 
points were determined to be 1000˚C and 836˚C 
respectively. The measured width of the weld bead is 
8.5mm. In this way, the distance from the seam line to the 
point where the temperature reaches the solidus 
temperature is 4.25mm.  

 
Fig. 1. Temperature records. 

To solve the heat problem, the heat source described in 
[20] was used. The calibration was performed according to 
the methodology described there. The heat flux density is 
defined in the moving coordinate system as 

)()( rUIAfrq η=   (3) 

where: 
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This model uses the efficiency η , effective heating 
radius arcr   and distribution coefficient arcarc rr0=α  as 
calibrating parameters. These parameters determine the 
values arcarc rr .0 α=  and 3/arcr=σ . Minimization of the 

maximum relative error was used to determine the values 
of the calibration parameters. In the Table I shows the last 
stage of solving the optimization problem, and Fig. 2 shows 
the result of the calibration process. 

TABLE I.  FINAL STEPS OF THE CALIBRATION PROCESS. 

η  mmrarc ,  arcα  Objective 
0.7000 9.540 0.3300 0.001036 
0.7030 9.540 0.3300 0.001276 
0.7000 9.510 0.3300 0.0011167 
0.7000 9.540 0.3420 7.35E-04 
0.6970 9.520 0.3380 9.87E-04 
0.6985 9.525 0.3360 8.92E-04 
0.7000 9.540 0.3360 8.81E-04 
0.7000 9.525 0.3360 8.44E-04 
0.7015 9.540 0.3360 9.84E-04 
0.6985 9.530 0.3400 8.36E-04 
0.6993 9.533 0.3390 9.02E-04 
0.7000 9.533 0.3390 7.52E-04 
0.7000 9.540 0.3390 8.07E-04 
0.7008 9.540 0.3390 8.55E-04 
0.6993 9.535 0.3410 8.55E-04 
0.6996 9.536 0.3405 7.53E-04 
0.7003 9.544 0.3415 7.39E-04 
0.6998 9.543 0.3422 7.16E-04 
0.6995 9.544 0.3430 7.88E-04 
0.7000 9.544 0.3433 7.06E-04 
0.7000 9.546 0.3447 7.20E-04 
0.6996 9.541 0.3435 7.25E-04 
0.6998 9.542 0.3430 7.27E-04 
0.6999 9.543 0.3427 7.67E-04 
0.7000 9.542 0.3426 7.92E-04 
0.7001 9.544 0.3424 7.36E-04 
0.7000 9.546 0.3430 7.05E-04 
0.7001 9.547 0.3431 7.28E-04 
0.7002 9.546 0.3430 7.68E-04 
0.7000 9.544 0.3428 7.56E-04 
0.7002 9.545 0.3430 7.98E-04 
0.7000 9.544 0.3428 7.06E-04 
0.6999 9.545 0.3437 7.48E-04 
0.7001 9.544 0.3427 7.46E-04 
0.7000 9.545 0.3431 7.02E-04 
0.7000 9.545 0.3429 7.24E-04 
0.7001 9.545 0.3427 7.05E-04 
0.7001 9.545 0.3429 7.37E-04 
0.7000 9.545 0.3429 7.26E-04 
0.7001 9.545 0.3429 7.78E-04 
0.7000 9.545 0.3430 7.63E-04 
0.7000 9.545 0.3430 6.99E-04 

 

 
Fig. 2. Calibration result. 
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III. RESULTS AND DISCUSSIONS 
The general view of the temperature field is presented 

in Fig.3 and Fig.4. Fig. 5 shows the high temperature region 
with isothermal surfaces plotted for the calibration values 
and temperatures 800˚C and 500˚C. Except for the 
isothermal surface for the solidus temperature, the others 
have an almost cylindrical shape.  

 
Fig. 3. Common view of temperature. 

 
Fig. 4. Isothermal surfaces (K). 

Fig. 6 shows the isothermal contours for the calibration 
temperatures and the liquidus temperature. It can be noted 
that the two-phase region is extremely small in size. 
Furthermore, it is also evident here that the measured 
temperatures have been reached at the control points. From 
what is shown in this figure, it follows that the deviation in 
the width of the 1000˚C isotherm is within 0.3 mm. 

 
Fig. 5. Isothermal surfaces in the high temperature region. 

 
Fig. 6. Isothermal contours on top surface for calibrated 

distances and liquidus temperature. 

One of the most important characteristics that should be 
determined when welding steels prone to the formation of 
cold cracks is the cooling time from 800˚C to 500˚C. Fig. 7 
shows the isotherms at these temperatures. The seam line 
distance between these isotherms in the cooling zone is 
30.5 mm. Since the welding speed is 10 cm/min, this means 
that the cooling time from 800˚C to 500˚C t8/5 for the points 
of the seam line is 18.3 s. 

 
Fig. 7. Isothermal contours for t8/5 determinating. 

Table II shows experimental and calculated data on the 
cooling time at the control point reaching the maximum 
temperature of 1000˚C. The obtained experimental data 
indicate that the t8/5 is 15 s. The result calculated by the 
model is 19.5 s. This shows that at the used cooling 
conditions (coefficient of convective heat removal 8=h
W/(m2K) and emissivity 4.0=ε ) the measured values are 
lower than the calculated ones. Fig. 8 illustrates the 
influence of the distance from the axis of the seam on the 
duration of t8/5. It can be seen that the cooling time from 
800˚C to 500˚C is the least along the seam line. 

TABLE II.  EXPERIMENTAL AND CALCULATED DATA FOR 
COOLING RATE DETERMINING 

Experimental 
t, h:m:s T, ˚C t, h:m:s T, ˚C 
0:01:05 800.11 0:01:13 582.84 
0:01:06 746.98 0:01:14 571.02 
0:01:07 712.31 0:01:15 557.55 
0:01:08 687.43 0:01:16 544.28 
0:01:09 662.2 0:01:17 532.52 
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0:01:10 619.55 0:01:18 522.28 
0:01:11 600.69 0:01:19 511.00 
0:01:12 586.87 0:01:20 500.32 

 
Calculated 

t, s T, ˚C t, s T, ˚C 
44.25 816.37 54.75 608.18 
45.00 796.65 55.50 597.67 
45.75 777.59 56.25 587.56 
46.50 759.67 57.00 577.84 
47.25 742.57 57.75 568.50 
48.00 726.22 58.50 559.48 
48.75 710.66 59.25 550.80 
49.50 695.75 60.00 542.41 
50.25 681.56 60.75 534.30 
51.00 667.95 61.50 526.47 
51.75 654.94 62.25 518.87 
52.50 642.50 63.00 511.52 
53.25 630.56 63.75 504.39 
54.00 619.16 64.50 497.47 

 

 
Fig. 8. Cooling time for diferend distance from seam line. 

 

IV. CONCLUTIONS 
Comparing experimental and simulation modelling 

results shows that the heat source model can be 
successfully calibrated to the maximum temperatures 
measured near the seam. When using constant values of the 
characteristics describing the convective and radiative heat 
removal, the obtained calculated values for the cooling time 
from 800˚C to 500˚C are higher than the experimentally 
determined ones. This means that it is important to use 
temperature-dependent coefficients describing the cooling 
process. Comparing the calculated results for points at 
different distances from the seam shows that, in the 
considered case, the lowest value of t8/5 was obtained along 
the seam line. 
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