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Abstract - This research proposes a way to accelerate 
backtesting of trading strategies using data-oriented design 
(DOD). The research discusses the differences between DOD 
and object-oriented approach (OOP), which is the most 
popular at the current moment. Then, the paper proposes 
efficient way to parallelize a backtesting using DOD. Finally, 
this research provides a performance comparison between 
DOD and OOP backtester implementations on the example 
of typical technical indicators. The comparison shows that 
use of DOD can speed up the process of quantitative features 
calculation up to 33% and allows for parallelization scheme 
that better utilizes resources in multiprocessor systems. 
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I. INTRODUCTION 
Term backtest refers to testing of a trading strategy on 

historical data in order to assess its effectiveness or 
optimize parameters [1]. In essence, backtest is a 
simulation, in which the algorithm being tested is placed in 
conditions as close as possible to the real exchange trading 
that took place in the past. Even though the results of such 
test are hypothetical and in no case can be unambiguously 
considered a reliable indicator of the strategy success on the 
real market, they allow, at least, drawing conclusions about 
its adequacy and obtaining an estimation of many of its 
properties, such as the ratio of purchases to sales, the 
number of transactions per unit of time, etc. Although 

various studies indicate a high probability of overfitting 
when a strategy’s model is constructed and optimized 
based on the results of a backtest [2], the testing of trading 
algorithms on historical data is still the main tool for trading 
strategy development and can often be seen both in practice 
and in academic research. 

Regardless of the goals and methods of using the 
backtest results, the procedure itself requires a lot of 
computational power. Due to the development of trading 
platforms and the growing popularity of algorithmic 
trading, the amount of data that needs to be analysed and 
processed is constantly growing [3]. Modern trading robots 
are capable of performing hundreds of transactions per 
second. To remain competitive a trading system must be 
able to respond to even the smallest events. Many 
exchanges, in turn, provide an opportunity to receive 
sufficiently detailed data in the form of real-time 
anonymous order flow. Just for single trading instrument 
the number of orders, passing through the trading system 
per day, can run into millions. For reliable strategy testing 
all this amount of data must also flow through the 
backtesting system. Of course, one strategy can work with 
a large number of instruments at once, and the tested period 
can be as long as several years, which only increases the 
number of calculations. 

This work is devoted to the computational side of 
backtesting. To increase the speed of computations it is 
proposed to use data-oriented design (DOD) [4]. Currently, 
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DOD is mainly used in the video game development and 
serves as a tool for optimizing resource-intensive 
computational tasks; it also offers techniques for 
parallelizing data processing efficiently. The goal of the 
research is to compare DOD with the most popular at the 
moment OOP approach and evaluate performance of 
backtesting software developed using both approaches. 

II. MATERIALS AND METHODS 
To understand the context of the study, it will be useful 

to define some abstract architecture that any software for 
testing trading strategies on historical data will sufficiently 
implement. First of all, let’s consider the input data. Most 
of modern markets are double auction markets, meaning 
that buyers and sellers simultaneously offer their prices by 
submitting bids to the exchange's trading system. Those 
bids form an order book (table of quotes), which reflects 
the current supply and demand at various prices and is 
available for all bidders. If the system receives an order, 
which satisfies certain conditions (usually, the condition is 
that the order price is not worse than the price of one or 
several opposite orders), an execution (deal or trade) occurs 
at the best price for both parties. Thus, the main sources of 
the data, from which a strategy generates a trading signal, 
are order book and a table (list) of deals. As mentioned 
above, the most detailed type of data is the flow of all 
orders, entering the exchange. However, this format is not 
available on certain trading platforms. Instead, an exchange 
might broadcast two separate data streams: a simplified 
representation of the order book, consisting of price levels 
(price and quantity pairs), and trade executions with 
varying degrees of detail (for example, some platforms 
broadcast passive participants of transactions only or vice 
versa). 

Usually, data is transmitted in incremental manner - 
instead of entire current state, each data packet contains 
only a change of a state since previous packet (or 
information about particular event in exchange's trading 
system). Typically, these features are reflected both in the 
market data storage system (information is stored as 
incremental updates) and in the architecture of the backtest 
software, which is implemented as an event-driven system. 
Market trading, as a rule, isn't going on continuously. 
Instead, the trading day is separated into several sessions 
with short breaks between them. Similarly, backtesting is 
often applied to one or more sessions. One day is often 
chosen as the minimum time unit for backtesting. 

Thus, the primary function of the backtester is to read 
the raw data of a trading session from some source (file, 
database, TCP connection, etc.) and restore the order book 
and deals table - i.e., restore a structured data. 

The next function of the backtester is strategies 
calculation. In this paper it is understood as the 
computation of a set of simple predicates that compare 
certain computable features, with some threshold values. 
The fixed thresholds, as well as the weights and coefficients 
needed to extract the features, are called strategy 
parameters. From this point of view, a strategy is, in fact, a 
decision tree, the output of which is a trading signal that 

tells to buy or sell certain volume of a given trading 
instrument. 

The next function of the backtester is to extract some 
quantitative features from structured market data. By 
analogy with indicators in technical analysis, in this study, 
a module that calculates a certain feature, is called an 
indicator. Thus, an indicator is a module that makes any 
calculations based on market data of a specific financial 
instrument. The main structural function of such modules 
is to minimize the computation graph by reusing already 
calculated features. As a rule, the indicator algorithm 
depends not only on the market data, but also on additional 
parameters, i.e., it implements the calculation of a whole 
class of features instead of just one. Despite the apparent 
simplicity, it is the effectiveness of the organization of 
indicators that determines the performance of the entire 
system. Since different strategies within a single backtest 
session can use the same indicators, the backtester must 
provide a mechanism for reusing the results of calculations. 
This is important, because in the problem of parameter 
optimization, in the vast majority of cases, heuristic search 
techniques are used, such as a particle swarm [5, 6], genetic 
algorithms [7, 8], and machine learning methods [9] - [12]. 
The use of such techniques implies computation of a large 
number of combinations of parameters, many of which 
would partially repeat each other, which would inevitably 
lead to repetitive calculations. 

The last and the main function of the backtester is the 
simulation of executions, and the calculation of various 
trading metrics, starting with simple numerical 
characteristics of the strategy, such as the number of orders 
sent, the maximum position size (the number of units of a 
trading instrument in the portfolio) or the ratio of purchases 
to sales, and ending with financial metrics for assessing 
efficiency of investment portfolio (e.g., Sharpe ratio). 

In addition, the backtester must provide an adequate 
simulation of the conditions in which the algorithm being 
tested is supposed to operate. Thus, it is necessary to 
control the number of transactions and comply with the 
restrictions on lot sizes or the minimum price step set on 
the specific trading platform. The number of different rules 
that must be checked during simulation can vary greatly 
depending on the exchange, regulatory rules, or the needs 
of a trader. 

So, to summarize: strategy testing software performs 
the following operations: 

a) Reading data from a certain source and restoring 
structured data necessary for calculating trading signals; 

b) Extracting quantitative features from structured 
data; 

c) Generation of trading signals; 

d) Simulation of executions and computation of 
effectiveness metrics of the trading algorithms. 

This study is mainly devoted to extraction of features 
and generation of trading signals. Since simulation of 
executions may greatly vary depending on many factors, 
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the process of trading simulation is not considered in this 
paper. 

The classic implementation of the backtester performs 
all the processing steps sequentially for each individual 
event. In the most common OOP paradigm different types 
of indicators are represented by classes. Each instance of 
such class encapsulates the thresholds, coefficients and 
intermediate values required for calculations. Strategies are 
implemented in a similar way. Together the instances of 
these classes represent the computing core of the trading 
system, for which an example of a UML class diagram is 
shown in “Fig. 1”. The indicator instances implement the 
calculate method in which, based on the incoming data 
packet and the internal state, some features are computed. 
Instances of strategies, in turn, generate trading signals, 
based on values calculated by indicators. Later the signals 
can go through several more stages of processing, but this 
is not essential in this study. 

 
Fig. 1. UML class diagram of backtester’s core. 

It can be seen from the diagram that the main cycle of 
the system looks as follows: iterate over all indicator 
instances and call their calculate method, and then repeat 
the same for all strategy instances. Data-Oriented Design 
offers an alternative approach to computing. One of the 
main principles of DOD is: "structure of arrays versus array 
of structures" (SoA versus AoS). Its essence lies in the 
reorganization of data in such a way that instead of 
sequential placement of records corresponding to a certain 
entity, individual components inherent in this entity are 
sequentially located in memory. For example, if the task is 
to process an array of N pixels in RGB format, the 
traditional representation as a vector of N tuples of the form 
(R, G, B) is replaced with a 3xN matrix, where each row 
corresponds to a colour component, and the column 
represents the entire pixel. This layout can significantly 
improve performance due to greater data locality. Of 
course, the speed gain depends on the pattern of accessing 
the fields of such records. The greatest increase of 
performance is achieved when the computations is done on 
the individual rows of the matrix. It should be noted that 
hereinafter it is assumed that matrices are implemented as 
a set of separate one-dimensional arrays that makes it easy 
to add or remove rows. 

In the backtester, the principle of "structure of arrays 
versus array of structures" finds several uses. The first 
relates to the backtester's computational core. In this paper, 
the following organization of computing units is proposed. 
To calculate K indicators of the same type, which require 
C coefficients for calculations, a matrix of parameters IP: 
CxK is allocated, where a row represents separate indicator 
coefficient. The module that performs calculations receives 
IP and market data as an input. The calculation results are 
placed in the output matrix I: LxT, where L is the number 
of output values of the indicator, T is the total number of 
all indicators involved in the current backtesting. Thus, in 
proposed architecture each OOP instance of the indicator 
class is represented by a column in the parameters matrix, 
and instead of calculating each feature separately all 
indicators of the same type are processed at once. At a 
minimum, this allows reducing the cost of a function call 
(which can be very significant in the case of using 
polymorphism and virtual functions), at best, this approach 
increases the locality of the instruction and data cache. 

In a similar way, the instances of strategy classes are 
replaced by the matrix of parameters PS. The input data for 
the strategy calculation module are matrices I, PS and PM. 
The essence of the PM matrix is as follows: the number of 
strategies can be greater than the number of indicators, 
since the calculated values of the latter can be used in the 
signals generation by several different strategies. 
Therefore, it is necessary to provide a way to map the index 
of the strategy to the corresponding value in the matrix I, 
what is accomplished with PM. 

Such organization is, in fact, an implementation of the 
ECS (entity-component-system) pattern, in which each 
object (called an entity, according to the pattern) is 
represented by a set of components that only store data or 
state. All logic of a program is executed by so-called 
systems that perform calculations with specific 
components [13, 14]. In terms of this pattern, indicators and 
strategies are systems, and their parameters are 
components. In this case, the trading system itself can be 
considered an ECS-entity. “Fig. 2” shows the OOP 
architecture after applying proposed transformations. 

 
Fig. 2. UML diagram of DOD backtester’s core. 

The principle of "structure of arrays versus array of 
structures" is well suited not only for storing intermediate 
calculations during backtesting, but also for representing 
input data. One of the main types of input data for a strategy 
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testing system is a table of deals. Minimum set of fields that 
are required to represent a deal record are the following: 

a. Instrument id - trading instrument identifier; 
b. Timestamp - time of the transaction; 
c. Price - the price of the deal; 
d. Quantity - the volume of the deal; 
e. Flags - a set of bits used to encode the direction of 

the deal (buy or sell) and utility information. 
In addition to the specified fields, for example, the 

identifier of the exchange or market may be added (in case 
if a backtest involves instruments on different exchanges). 
Also, some trading platforms may broadcast the identifiers 
of orders involved in the transaction. In general, the set of 
fields can vary in different implementations depending on 
the needs of the users, but one way or another, the fields 
specified above should be present. 

It is important to understand that, as a rule, not every 
field is required for calculating indicators (basically, the 
price, volume and direction of the transaction are needed). 
When reading transaction records using the classical 
approach of the "array of structures" a significant part of 
the processor's cache lines is wasted on utility fields that 
are not involved in the calculations. Organizing records as 
a SoA solves this problem. In addition, such a layout makes 
it possible to use SIMD instructions more efficiently due to 
a more optimal "vertical" arrangement of data in memory 
[15].  

One of the advantages of a more vertical data 
arrangement as a "structure of arrays" is the ease of 
parallelization. As it was said, data processing in the 
strategy testing system can be logically divided into 4 
stages. These stages, in the case of an OOP system, are 
sequentially executed for each packet of incoming data. 
With such approach, parallelism is possible only at the level 
of trading sessions and only if the strategies being tested 
are designed for short-term trading and remain position-
neutral most of the time, i.e., always have empty portfolio 
at the end a trading session. 

To ensure efficient parallel execution, this paper 
proposes to combine the stage of generating trading signals 
and trading simulation in one stage. Instead of sequential 
processing of data packets, it is proposed to move to 
sequential processing of stages. Thus, the first stage 
(responsible for reading data) prepares not just single piece 
of data for the subsequent calculation of features, but 
processes all incoming data at once. The results are saved 
in SoA format, namely in the form of a matrix D: PxN, 
where P is the number of values calculated at this stage, N 
is the number of data packets. The amount of calculations 
required is determined by a set of indicators. However, 
there is a mandatory row which must always be present in 
D - an array of time stamps of data packet arrival. Without 
this array time averaging, which is often found in financial 
calculations, is impossible. Time also plays an important 
role in the trading simulator module for emulating delays 
in sending and receiving orders and other messages. This 
stage differs little from the OOP approach, because I/O 
operations are performed most of the time and use 
parallelism is limited by storage devices. 

The next stage is the calculation of indicators. It takes 
D and a matrix of parameters as an input and performs 
computation of the required features. A new matrix I is 
formed as the result of this stage. It should be noted that 
strategies do not always generate a signal upon the arrival 
of each individual packet. It is a fairly common practice in 
trading systems to split a continuous data stream into 
intervals within which the features are calculated. Thus, the 
number of columns of I is limited by the number of packets, 
and the number of rows can be infinitely large, since the 
indicator can calculate more than one feature. Such 
organization of computations ensures the independence of 
indicators from each other, which allows them to be 
processed in parallel. At this stage, almost any number of 
processors can be involved, of course, within the limits of 
the number of indicators. 

The third stage is the calculation of strategies and 
trading simulation. The strategies receive parameters 
matrix and matrix I, on the basis of which trading signals 
are calculated. Ultimately, the signals become trade orders 
for placing or cancelling bids with certain parameters 
(price, volume, etc.). Trade orders together with the data D 
prepared at the first stage are sent to the trading simulation 
module, where the placing of orders on the exchange and 
their execution are simulated. Information about executed 
orders is fed back to the strategy to update information 
about the current position. Also, based on the executions, 
various financial metrics of the strategies are calculated, 
which are the final result of the entire system. Similarly to 
indicators, each individual strategy is completely 
independent and its financial metrics calculation and 
trading simulation can be done in parallel. 

For efficient use of resources a work-stealing task 
scheduler is used in the system [16]. Also, it is necessary to 
take into account the priority. It means that strategy 
processing and trading simulation is of the highest priority, 
since the user is interested in getting the results as early as 
possible. The read data step only needs to be performed if 
no other tasks are available. In addition, dynamic load 
balancing is implemented. Since the number of threads, as 
a rule, is less than the number of indicators and strategies, 
it is necessary to group their calculations. In this way, the 
grouping that provides the greatest locality of data and 
instruction cache is more preferable, i.e., grouping in which 
the number of ECS-systems processed by one processor is 
minimal. Since the backtesting procedure assumes repeated 
execution of the same algorithms, it is proposed to store 
information about the time spent on a certain type of 
computation at each stage with subsequent averaging over 
all observations. The resulting value can be used as an 
estimate of the execution time. Based on the estimate, ECS-
systems are distributed among threads, so that all of them 
spend approximately the same amount of time. 

III. RESULTS AND DISCUSSION 
In order to demonstrate the effect of the proposed 

transformation, for this study a backtesting system that 
implements OOP and DOD approaches has been 
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developed. Several performance tests were conducted. The 
first test was to calculate a simple technical indicator SMA 
on simulated dataset consisting of 1 million records. In 
different launches of the program, a different number of 
indicators are calculated, with each launch repeated 10 
times. The average time of all launches is considered to be 
the result. Subsequent performance tests in this work are 
carried out in a similar fashion. The results of the program 
runs are shown in “Fig. 3”. The vertical axis shows the time 
in milliseconds, i.e., the smaller the result, the better. The 
horizontal axis shows the number of calculated indicators. 
The program in this and subsequent tests is built with g++ 
compiler version 9.3 with O3 optimization level and is 
executed on a multiprocessor server system with 120 Intel 
Xeon CPU E7-8880 v2 @ 2.50GHz processors under the 
Gentoo Linux operating system. 

As it can be seen from the graph, in the case of a small 
amount of calculations, the architecture proposed by DOD 
shows the result no worse than OOP, but significantly 
exceeds the performance of object-oriented approach with 
an increase in the number of indicators. So for 8 indicators 
the speed increase is 23%, and for 64 the acceleration 
reaches 36%. 

 

 
Fig. 3. Plot of execution time versus number of indicators. 

The effectiveness of the proposed data organization is 
demonstrated in “Fig. 4”. The graph shows the results of 
calculations of the weighted average price VWAP for an 
array of 10 million transactions, represented by structures 
of different sizes. OOP stands for the classic AoS approach, 
and DOD stands for the SoA approach. The horizontal axis 
marks the size of the deal data structure. 

 
Fig. 4. Plot of performance versus data structure size. 

Assuming that 64 bits are allocated for each field of the 
structure, at least 40 bytes are required for single deal 
record. As it can be seen from the graph, with the DOD 
approach the processing speed does not depend on the size 
of the structure, and the performance gain is observed even 
for 16 bytes (as if only two fields were allocated to 
represent the transaction - price and volume). Speedup only 
grows with and increases in memory size and for 40 bytes 
the performance gain is 66%. 

Also, in this study similar testing of the data structure 
for order book processing was carried out. The paper [17] 
is taken as a basis, in which it is proposed to use an array 
of price levels in the form of pairs (p, q) where p is the price 
and q is the volume. The order of such array is maintained 
when inserting and removing elements. According to the 
principle of "structure of arrays", this scheme is converted 
into two one-dimensional arrays - separately for all prices 
and all volumes. Various metrics were measured for the 
new data structure: 

a. The time of processing all incoming data packets 
within one session; 

b. The time during which the following features are 
repeatedly calculated on the basis of a fixed number of the 
first price levels: average price; average volume; weighted 
average price; the price of a level at which the volume is 
not less than a certain fixed number. The testing was carried 
out on both simulated and real data for the most active 
trading instruments on the MOEX exchange. None of the 
designated tests found a significant difference in execution 
speed between SoA and AoS. 

The performance of proposed parallelization scheme 
was tested using the classic MACD strategy as an example. 
In the test system within one trading session 2000 different 
combinations of MACD parameters are processed, for 
which it is required to calculate 1000 different moving 
price averages, in this test SMA was used. “Fig. 5” shows 
a graph of the performance of the sequential OOP version 
and the two types of proposed DOD system. In first case 
DOD system is tested when the calculations are perfectly 
balanced between the threads (Balanced). In second case 
one of the threads performs 1.5 times more work than any 
other (Unbalanced). It is worth noting that OOP, as well as 
DOD, implements all the optimizations proposed. Because 
the OOP version cannot be executed in parallel for one 
trading session, its performance does not change on the 
chart. DOD version, in turn, expectedly demonstrates a 
speedup of almost N times for N threads, in the case when 
computations are perfectly balanced. 

 

 
Fig. 5. Plot of performance versus number of threads. 
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The proposed computation scheme scales better for a 
large number of processors, compared to sequential 
computations in the classical OOP approach. Trading 
instruments also introduce an additional degree of 
parallelism. In the case when the strategy operates with 
several securities at once, the calculation of features for a 
separate security does not depend on the others and can also 
be performed in a separate thread. 

Nevertheless, the proposed method for parallelizing 
computations has its drawbacks. It is easy to see that the 
proposed system allocates a large amount of memory. 
Because the calculated values are stored for each data 
packet, the upper limit of the total number of data cells is 
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  ∗  𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗  𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. Considering that the 
number of packets is running into millions, and the number 
of strategies and indicators is in thousands, the system 
consumes a significant amount of RAM even for simple 
backtest scenarios. Of course, this problem can be solved 
by artificially reducing the size of the trading session, but 
such a solution inevitably leads to additional overhead. 

Another disadvantage is the bandwidth. Despite the fact 
that the proposed architecture is highly scalable, under 
certain conditions its performance does not exceed the one 
of sequential OOP system. This situation occurs when the 
number of sessions being tested equals or greater than the 
number of available threads. Because a sequential system 
can process individual sessions in parallel, it is capable of 
performing the same amount of computation at the same 
time. Considering that sequential execution does not 
require a large amount of memory for intermediate 
calculations, the classical system would be much more 
efficient in terms of resource consumption. However, the 
backtest results for each individual session would be 
available much later. Thus, in the proposed and sequential 
systems, the same backtesting of N sessions will be 
performed in the same time T. But the time for complete 
processing of single session in a sequential system will be 
T, and 𝑇𝑇/𝑁𝑁 in parallel one. 

IV. CONCLUSIONS 
This work shows how DOD optimization techniques 

can be applied to the automated trading and, in particular, 
to the testing of trading strategies on historical data. The 
empirical performance tests carried out show that in such a 
computationally expensive task like backtesting, escaping 
the traditional object-oriented approach towards organizing 
data in a more vertical layout of "structure of arrays" can 
give a significant increase in performance. Empirical 
testing shows that use of DOD can speed up the process of 
features calculation up to 33%, and that organizing data in 
AoS format may additionally increases performance up to 
66%. It is worth noting that the optimizations proposed, 
except for parallel execution, can also be implemented in 
real-time trading systems. 

The proposed parallelization method, despite having 
certain drawbacks, has greater scalability, which is very 
important for multiprocessor systems, especially 
considering how rapidly the number of cores in modern 
processors is growing. It should also be said that the 
proposed data organization scheme is very well compatible 

with the modern machine learning tools. This is quite 
useful, because artificial intelligence methods are 
increasingly being used for the financial information 
analysis and the development of trading strategies. Also, a 
more vertical representation of data contributes to better 
integration with columnar databases, which are often used 
to process large amounts of data [18]. 
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