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Abstract. In this paper we consider averaging methods for solving the 3-D boundary value problem in
domain containing 2 layers of the peat block. We consider the metal concentration in the peat blocks.
Using experimental data the mathematical model for calculation of concentration of metal in different
points in every peat layer is developed. A specific feature of these problems is that it is necessary to solve
the 3-D boundary-value problems for elliptic type partial differential equations of second order with
piece-wise diffusion coefficients in every direction and peat layers.

The special parabolic and exponential spline, which interpolation middle integral values of piece-wise
smooth function, are considered. With the help of this splines is reduce the problems of mathematical
physics in 3-D with piece-wise coefficients to respect one coordinate to problems for system of equations in
2-D. This procedure allows reduce the 3-D problem to a problem of 2-D and 1-D problems and the
solution of the approximated problem is obtained analytically.

The solution of corresponding averaged 2-D initial-boundary value problem is obtained also
numerically, using for approach differential equations the discretization in space applying the central
differences. The approximation of the 2-D non-stationary problem is based on the implicit finite-
difference and alternating direction (ADI) methods. The numerical solution is compared with the
analytical solution.

Keywords: diffusion problem, special splines, analytical and numerical solution.

I INTRODUCTION

The task of sufficient accuracy numerical
simulation of quickly solution 3-D problems for
mathematical physics in multilayered media is
important in known areas of the applied sciences. To
achieve this goal we consider two methods: special
finite difference scheme and averaging method by
using integral parabolic and exponential splines. For
engineering calculation the concentration of metals in

coordinate. These methods were applied for the
mathematical simulation of the mass transfer process
in multilayered underground systems. It is necessity to
solve the 3-D initial-boundary-value problems for
parabolic type partial differential equations of second
order with piece-wise parameters in multilayer
domain. The special spline, which interpolation
middle integral values of piece-wise smooth function,
is defined. With the help of this splines is reduce the

peat layered blocks is chosen the averaging method.
The finite-difference method is used only for
solving the obtained 1-D and 2-D problems. The
layered peats block are modelled in [5], [4].
A. Buikis ([1], [3]) considered different
assumptions for averaging methods along the vertical

problems of mathematical physics in 3-D with piece-
wise coefficients to respect one coordinate analytically
to problems for system of equations in 2-D.

The solutions of corresponding 2-D initial-
boundary value problem are obtained numerically,
using the implicit finite difference approximation and
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alternating method of Douglas and Rockford. The 3-D
problem is reduced to 2-D and 1-D problems used
integral parabolic and exponential splines.

Il MATHERIALS AND METHODS

1. A mathematical model
The process of diffusion the metal in the peat block is
consider in 3-D parallelepiped

Qz{(x,y,z):OSxSLx,OSySLy,OSZSLZ}

The domain € consists of multilayer medium. We
will consider the non-stationary 3-D problem of the
linear diffusion theory for multilayered piece-wise
homogenous materials of 2 layers in the form

Q; ={x,y.2):xe(OL,), yeOL,) z(z1.2)}i =12
where H; =z; —z;_qis the height of layer Q;,
Zp = O, Zy = LZ .

We will find the distribution of concentrations
c :c,-(x,y,z,t) in every layer Q; at the point
(x,y,z)te- and at the time ¢ by solving the

following 3-D initial-boundary value problem for
partial differential equation (PDE):

Oc; (x,y,z.t) Q[Dix GC(X’%Z’[))‘LE(DW ac(x,y,z, I)J .

o ox ox oy oy

3[D,-Z 766()6');'2'!)) +f; (x, y,z,t)
oz Oz

X e (O,Lx), ye (O,Ly), ze (O,LZ),

te (O,tf),i =12

oc; (0, Vv, 2, t)/ax = 0c; (x,O, z, Z)/E}y =0
Dy.0¢y(x,,0,6)/ 0z = B.(e1(x, .0,0) = o (x,)) = 0
Dtxaci(vaJ’vZ|t)/6x+0‘ix(ci(Lx|%th)—Cm(%z)):O:
i=12
D;,0c;(x, L
=12
DZZﬁcz(x,y,LZ,t)/52+

a, (cz (x,»,L,,t)—c,.(x, y)) =0
cr(x,y,21,t) = ¢ (x, ¥, 2,1)

D, .0cy(x,y,21,t)1 0z = Dy 0cy (X, y,21,t) | Oz
¢i(x,3,20)=c;o(x,»,2),i =12,

xe (O,Lx), yE (O,Ly), ze (O,LZ),

cizci(x,y,z,t) are the concentrations

21y + (e, Ly 2,8) = iy (x,2))= 0,

(1.1),

where
functions in every layer, f,-(x,y,z,t) - the fixed

source function, D, D;,, D;. are constant diffusion

coefficients, «;

X1
mass transfer coefficients for the 3rd type boundary
conditions,  ¢,., gy, Ciger Coz, i =12 are  given

oy, a., B.,i=12 are the constant

concentration values on the boundaries, tf is the

final time, c¢;o(x,»,2),i=12 are given Iinitial
concentrations:
where ¢ :c,-(x,y,z,t) are the concentrations

functions in every layer, f,-(x,y,z,t) - the fixed
source function, D, D;,,

a,,p,,i=12 are the constant

D,, are constant diffusion

coefficients, «.

i1 &

ly’
mass transfer coefficients for the 3rd type boundary

conditions, ¢, ,Cigy, Cigyr  Co., =12 are given

concentration values on the boundaries, tf is the

final time, c,o(x,»,2),i=12 are given Iinitial
concentrations:
1) The homogenous 3rd type conditions

byx:Lx,yzLy,zsz,Zzo,

2) The symmetrical conditions by x=0,y=0. The
values ¢; and the flux functions D, 0c; / 0z must be
continuous on the contact line between the
layersz = z; .

2. The averaged method in z-direction with the
integral exponential spline

Using averaged method respect to z with exponential
or hyperbolic trigonometric functions we have
0.5H,sinh(a;(z—z;))

sinh(0.5q,H;)
2 ( cinh2 =

A i L G Cat) R ||

4 | sinh“(0.54;H;)

where ¢, (x,y,1) = Hi‘lri ci(x,y,z,t)dz,
Zia

sinh(a;H;)/(a;H;) -1 -

Ajo. = ( U ) g :(Zi—1+zi)/2'
cosh(a;H;) -1

z€e(z;4,2;]i=12.
If parameters a; >0 are tending to zero, then we
obtain the limit as a parabolic spline because of
Ay, > U3 [1]:
ci(x.y,z,0) = (x, y, )+ my, (x,p,0 )z -2, )+
e (x, y,t)((z ~z, ) -H, /12),1' =12.
The unknown functions m,, (x,y,t),e, (x,y,t) it is
possible to find out from the boundary conditions
(2.1) in the following form in z -direction:
1) Forz =0,
dy(my, —e.Hq) -
B.(c1, =0.5my Hy + ey Hy (0541, Hy — o, ) =0,
2)Forz=L_,

¢;(x, v,z t)=c(x,y,0)+m,
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dy(my, +ey . Hy)+

a,(cy, +0.5my, Hy + ey, Hy (05451, Hy — ¢, ) =0,
3)Forz=2z, ¢, +0.5m,H +e,H,0.54,1,H, =
¢y, —0.5my, Hy + €5, H,0.5451.H,,

dy. (mlz - elel) =d;. (mzz —ey.H; ) '

where d;, = 0.5D,.a; coth(0.5a;H;) ,

Ay, =05(1—A4,,)—>1/3,if a; >0, i=12.
From boundary conditions by z = z; follows:

my, = mo;(ca.—c1. )+ mper. Hy +mipep. Hy,
i=12,where mgy =2d,.I(Hjsq),

my = _(dlz +A4y1.Hidy. | Hy )lslv

myp =dy, (Ayy, —1)lsy, sy =dy, +dy, Hy | Hy,
mog = moydy, ldy, my =(myy +1)dy. 1d,,

myy =mypdy. /(dzz +1).

From boundary conditionsby z=0, z = L_ follows:
ey, Hyayy +ep, Hyayy = . (cr, —co, )—
e, Hiay + ey, Hyaz = —a,(c;, —
where by = mg, (0.5H, B, +d,.),
b, =mgy(0.5H,a, +d.y, )

ayy =dy, (myy —1)+0.58, Hy (my, — 4y, ),
dpy =dy. (’"22 +1)+0.5a, H, (mzz — Ay, ),
ajp =dy.myp +0.56. Hymyy

Aoy =do, My +0.50, Homy, .

fley ) =H? [ fieyzide,

_1(%
ci‘;x(y):Hi lj 2,1 C,-ax(y,z)dz,

(x,2)dz,

my

0 =H " iy

cin’O (x,y)= Hfl-“:i—lcio (x,y,2)dz, i=12.

3. The averaged method in y-direction
Using averaged method with respect to y we have

L,
Ciy(xvt) = L;ljo) Ciz(x'y!t)dy '
iz (v, 7,1)= ¢ (0,0)+

0.5L, sinh(a, (y—0.5L,))
m;, (x,t . +
Y sinh(0.5¢,L )

smh (a;(y—05L,)

sinh?(0.54,L,) A"Oyﬂ’

With the unknown functions m;, (x,1),e;, (x,2) we

can determine these functions from the boundary
conditions (3.1) in following form:

(CZZ —C1; )’
az) b, (sz —C1z )

Thene, H; = cy.by +cp.bp +co bz +co2big

i =12, where by = (ay, (B, +by)—byay, )l det,
bip = (arp (@, +by)—byay, )/ det,

byr = (= an (B, +by )+ byayy )/ det,

byy =(—ayy(@, +by)+ bay )/ det,

byg = ay f, det, by, =aq . [det,

det = ajqas +ajpay .

Now the initial-boundary value 2D problem is in
following form

/ﬁciz(x,y,t)ZEED Gciz(x,y,t)J+

ot axl " ox
%(Diy %yyt)j + fi. (e, y, )+ (2.1)
1 (x, 3, 0)by + ¢ (%, 3,0)bjp +
iZ(COz(xvy)bzG + ¢4, (%, 3)big j
xe (O,Lx), ye (O,Ly), te (O,tf),
ac,, (0, y,t)léx = dc,, (x,0,¢)/ 6y =0,

DixM+aix(ciz(Lx’yit)_ci\:lx(y))z
Ox
oc;. (x,L,,t)
iny+aiy(ciz(xiLyl ) zax(x)):
\ciz(x’yvo) :ciz,O(xiy)i
where B, =2d;/H,;,

my, (6,1) = €, (1,00 L, ==bysey, (6,0) = el ()

where b5 = aty, /(0.5L, a1+ Ay, )+ 24, ),
Ay, = 0.5(1—A,.0y),

£,)/{(a;L,)-1)

cosh(a;L,)-1

i =0.5L,D;,a; coth(0.54;,L,) .

Then the initial-boundary value problem (2.1) is in the

following form

sinh(a;
ioy —

/8ciy(x,t) _0 D 6cl~y(x,t) e s
T RS
By, biscyy (x,1) + (3.1)

Biler, (x.0)by + ¢, (1) )+

B cb (¥)bia + b (¥ )+ By biscly (1),
xe(0,.L,)te(0t,) oc,(00)/ax=0,
Dyl (L) ox+ay (e, (L 1) =l (3))=0,

\_Ciy (x,0) = Cip0 (x),

where B, =2D,, [ H,,
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-1 L,
Fiokwn ) =L fi Cey)dy,
Y -1 L,
(D)=L | " e (x. )y,
v -1 L,
co-(x) =L, J. co- (x,)dy
Ciax _L I mx(y)dy!

pol) =LA co(v )y i=12.

4. The averaged method in x-direction
It is possible to make the averaging also with respect

tox
(o, 2)dx,

=L e,
ey (x,1)= ,x(t)+

0.5L, sinh(a;(x —0.5L,)) .

i () (050 L)
sinh? (a;(x—0.5L,)
el )[ [ sinh?(0.5a,L,) Aioxﬁ

with the unknown functions m;, (¢),e;. () . We can
determine these functions from the boundary
conditions (4.1) in the following form:

v
mi = eixL = _biG (cix (t) ~ Ciax )7

where bg = o, (0.5L a, (1+ 44, )+2d,.).
Ay =051 Ao,
_sinh(a;L,) /((a;L,) -1)
v cosh(aL)-1

Then the initial-boundary value problem (3.1) is in
following form

acia#t(t) (leb16 +Bl’ybi5)cl'x (t)"'

fix (t) + Biz (bllclx (t) + bl’2c2x (t))+

B;, (C(szbze +bigCqr )"' (4.1)

Bi bl5cmy + B blﬁci‘;‘;’ te (O,tf ),
Cix (0) =Cix,01
-1 Lv\‘
where fit)=L; jo Siy (x,)dx

144 “afE B
Caz :Lx IO caz(x)dx’cix,o =Lx .[0 Ciy,0 (x)dx1

L\’
o = L] e ().

Therefore we have from (4.1) the initial problem for
ODEs of the first order:

Uy (1) = cyquq (2) + cppup (2) + ey (2),
Uy (1) = cpquy (1) + cpoup (1) + € (2), (4.2)
1 (0) = uyg, uy (0) = uyg,

. Ou(t
where u; () =c;, (1), i = ou; (1) ’
ot
u[(o)zcixOli:]-;zy
€ (Z) = B (cOzbl3 + bl4c )+ B blSClay + B blGC;:;c

+ fix (1),

c1y =By.byg - (leblﬁ + Blyb15)’
Cop = Bobyy —(Byybog +B2yb25)’
Co1 = By byy, ¢1p = By byy .

The solutions of (4.2) can be obtained with the help of
classical methods [6]. For the averaged stationary
solution follows the analytical solution in the form

c1e = (eacrn —e1cp)ld , e =(ercoy —excny)ld
where d = C11C9p —C12Co1 -

5. Analytical model for estimating the parameters
ay, ay

We consider the special 1-D diffusion problem in the
z -directionfor f = a, =, =0,

Cq:(x,¥)=C, cos(mx/ L, )cos(my/L, ),

co. (¥,)=Cycos(m/L,)cos(zy/L,). Then the
stationary solution of (2.1) is in the form
¢;(x,y,2) =c;(z)cos(mx/ Ly )cos(ny/ Ly,),  where

the function ¢, (z) is solution for following boundary-
value problem;

%(&é—iz)j —bfe(2)=0,z€(ziy,7 )

D,.0c,(0)/ 0z - B, (01(0) -Gy ) =0, (5.1)

DZzaCZ(Lz)/aZ+az(CZ(Lz)_Ca): 0

a(i) = (i1y), oy, ) _ p, 22 (T)
where b, = ||y, / 12 + D, 112 )1 D, i =1:2.

Therefore the exact solution is

¢1(z) = B sinh(byz) + P, cosh(b;z) ,

¢, (2) = Bysinh(b,z) + P, cosh(b,z) , where the
constants A ,P P, P, are the
Dy.,D,,,D.,L,L, L, a,,p.,CyC
averaged values are

a _Hl_l_[ “oy(2)dz = (Hy) ™

functions of
The

5 (cosh(h,H,) 1)

+ (Hl)_l%sinh(blHl),
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v Ry
¢y =H, IH co(2)dz =
1

(H, )_l(f—j (cosh(b,L,) - cosh(szl))j +

1 Py .
(H,) 1(b—4(smh(b2LZ) —sinh(b,H, —1))}
2
This form of solution remained also for discrete

approximation c(zj) =C;,z; = (j —1)h . h= %

j=1 NP, Hy = hN1 by using exact finite diference
scheme (FDS) from N.Bahvalov [2]:

c¢; =B sinh(bz;) + P, cosh(byz;), j=1,N1,

c¢; = Psinh(b,z ;) + P, cosh(b,z ;) ,

j=NLN1+1.

Dlz

2) CN—CN+1[1+th J+hC % -0,
2z

z=zyu =L,

3 P sinh(b Hy) + P, cosh(b Hy) = for
Pysinh(b,H,) + P, cosh(b H,)

z=H,, j=N1,

4) Dy (Cyy = Cyig) _ Doz (Cyiir = Cia) ,

h h
for z=H,;,j=N1.
Coefficients A, P, P, P, are obtained from:
B =bePy —bsCo, Py =byFy—b3C,
b3,by,bs,bg are the functions g; dependent on a

variety of variables:

by=gi(h,a.,D;.), by=gy(h,a.,Dy. by, L),
bs = g3(h, B., D1, by), bg = g4(h, B., Dy, by).
Coefficients P, P, are the functions gz,gg
dependent of variables

Co.C, Hy Hi+h,H - h,
a.,p.,D1., Dy ,by,by, L.

For comparing we use the averaged method with
respect to z with exponentials spline. Then
Uiy :aiy :0' Ciz = Cix»

¢; = B (Cobig + Cobig) i =12,

2 _ _
c11 = Bibiy — Dby, ¢1p = Bibiy, ¢p1 = By,byy,

szszzbzz—Dzzbzzv and using the averaged

method in z -direction the functions c,,,cq, are
replaced with C,,Cy.

We have following numerical results
(LZ::L’H].:O'G'HZ_O'4’LX:Ly:]" COZO.S,
C, =20, D, =107, @, =20,

(a, =a, =0.0001~ 0 - for parabolic spline).

Dy, =Dy, =107, by, =1.4050, B, =10,

b, =4.4429,D,. =5-10"*, D, =D, =5-10") for
maximal error o and averaged values cy,,cs,
depending on aj, a, (cf = 0.3558,c} =0.9809). The

numerical results are given in the TABLE 1
The solution ¢;,, z<[0,0.6], ¢,,, z<[0.6,1.0] for 3

methods (N =20) is represented in Figs. 1, 2. For
FDS we have & =0.0336(N =20), 0.0160(N = 40),
0.0078(N =80).

TABLE 1
THE MAXIMAL ERROR O AND AVERAGED vALUES 12, €2z
pEPENDING on 917 42

a aj 0 €1, Co;
0 0 0.1252 0.3022 0.9263
0.5 0.5 0.1235 0.3030 0.9273
1 1 0.1185 0.3051 0.9304
2 2 0.0996 0.3132 0.9421
3 3 0.0710 0.3250 0.9597
4 4 0.0450 0.3390 0.9812
5 5 0.0528 0.3528 1.0046
3 4 0.0378 0.3408 0.9842
2 4 0.0316 0.3422 0.9867
1 4 0.0283 0.3431 0.9884
1.2 4 0.0281 0.3430 0.9882

Using averaged method with respect to z with 2
unknown parameters in every layer we have
0.5H;sinh(a;(z-Zz;))

Ci(xvyvzit):Ciz(xvyvt)+miz

sinh(0.54,H)
izl 4 Sinh2(0.5a0,-Hi) i0z | |
_sinh(ag;H;)/(a;H;) -1 i=12

10z cosh(ag;H;) -1

We have the exact solution fora; =b;, a, =b,,

b b
gy =?1, g, =?2 for every other parameters.

0-’,,81 CO'Ca’Hl'HZ’LZ’DlZ’DZZ’
by.b, .
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Il RESULTS AND DISCUSSION

6. Some numerical results
A uniform grid in the space((M +1)x (N +1)):

{(yﬂxj)!yi = (i—l)hy X;= (j—l)hx},

i=LM+1,j=LN+1, Mhy=L, Nhx=L,
with a time ¢ moments ¢, =n7r,n=01...
Subscripts (i, j,n) refer to y,x,t indices with the

mesh spacing and for approximation the functions
¢ (x,,8),k =12 we have the grid function with

following values: ULy ey, (x;,05,)
U2:1,1 ~Co; (xjvyi'tn)
k=12.

For grid function’s

or Uk, ~cp(x;,3i:1,)

Uk{';  calculation Tomas
algorithm in x and y directions was used for

realization the alternating direction method (ADI) of
Douglas and Rachford (1955) and 3-point difference
equations for every direction were constructed.

The numerical results are obtained for [5]:

Zy, :mhz,m:O,?), h, =L—Z,

30
Dy, =Dy, =10"*,D,, =D,, =510"",
L. =3, a,=45, ay =30,
Hy=12,L,=L,=1a =20, g, =10,
=2 ,05, =2, g, =4, ay, =4,
Clay =2.5, ¢34y =25, ¢1,, =25, ¢3,, =25,
N=22, M=20, ay=45, ay =3.0.
On the top of earth (z=L,) the concentration
c[mglkg] of metals is measured in following nine
points in the (x, y) plane:

¢(0.1,0.2)=3.69 ; c(0.5,0.2)=4.43;
¢(0.9,0.2)=3.72; ¢(0.1,0.5)=4.00;
¢(0.5,0.5)=4.63; ¢(0.9,0.5)=4.11;

):
¢(0.1,0.8)=3.71; ¢(0.5,0.8)=4.50;
¢(0.9,0.8)=3.73.

This date are smoothing in matrix ¢, by 2D

interpolation with MATLAB operator, using the
spline function. In Fig. 2 we can see the distribution of
concentration ¢ for Ca in the (x, y) planebyz = L, .
On the below of peat block z=0 the elements of
matrix ¢y, have a constant value 1.30mg / kg .

For the initial condition the  averaged
solutions ¢ (x, ), k=12 are chosen. We have the

stationary solution withz =10, 7, =200 the maximal

error107° | the maximal value of ¢y, (x,y) 2.500 for

averaged method and for ADI method (following
results we can see in Figs 3, 4.).

Depending on the number of the grid points (N, M)
we have following maximal values for averaged
method and ADI methods:

46311 (N=22, M =20), 46298 (N=12,
M =10),4.6324 (N =32, M =30).

Concs ntration s=c{z)emor=0.1252

#  analyticzalution
18F e para balic spline

a8
a6

o4r
eg g st

a2 L L L L
a az a4 06 0.8 1
z

Fig. 1. Solution ¢1(2),¢2(2) for % = 20, B, :10‘

a = 1.2 , az = 4'0, using parabolic spline.

Concentration c=c{z)emo=0.0281

®  analyticsolution

—— o xponential spline

08
g F

a4

0z L M L L
a 0z a4 a6 0.8 1
z

Fig. 2. Solution c1(2),¢2(2) for ¥z = 20, B, :10’
al :1.2 az = 4.0

, using exponential spline.

Concentration ofz)by L2 Ly@, Max=4.6058, Min=1.3001

av?
* "
L gEEREFSIESH
15 -

L " L L L
a a5 1 1.5 2 25 3
z

Fig. 3. Graphic of averaged concentration C(Z) for

x=L 12,y=L,12
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Concentration cnumiziby /2, Ly'2 Max=4.6058, Min=1.3001

4.5

asf *

25F *

sne”
TEIEEE S
L pa®®*

a a5 1 15 2 25 3

Fig. 4. Graphic of numerical concentration C(Z) for

x=Lx/2,y:Ly/2.

IV CONCLUSIONS

The calculations were carried out with the
mathematical model, was confirmed by the results of
the measurements carried out on the surface of the
Earth and the deeper layers — the highest
concentrations of metals are at the top surface of the
Earth, then its very rapidly decreases with increasing
depth of peat layer.

Elements concentration in peat profiles confirms
with respect to the possibility of using trace elements
concentration as an indicator of the region and global
environmental pollution.

The 3-D diffusion problem in peats block is
reduced to 2-D and 1-D problems used the integral
parabolic and exponential splines. The 1-D differential
and discrete problems are solved analytically.

Increasing the number of parameters from one to
two for the exponential spline formula, in the process
of solving one dimension task the exact solution for
calculating the concentration in z -direction was
obtained.

The solutions of corresponding averaged non
stationary 2-D initial-boundary value problem are
obtained numerically using alternating-direction
implicit (ADI) method of Douglas and Rachford. The
numerical solution is compared with the designed
analytical solution.

The relative error in the calculation of the
concentration of heavy metals (FE, CA) with the
averaged method which has been designed by authors,
and the grid method does not exceed 2% -3%. It is
perfectly acceptable (valid for use) accuracy to tackle
practical engineering technical problems.
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