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Abstract. The Monte Carlo Rollout method (MCR) is a novel approach to solve combinatorial optimization 

problems with uncertainties approximatively. It combines ideas from Rollout algorithms for combinatorial 
optimization and the Monte Carlo Tree Search in game theory. In this paper the results of an investigation of 
applying the MCR to a Scheduling Problem are shown. The quality of the MCR method depends on the model 
parameters, search depth and search width, which are strong linked to process parameters. These dependencies are 
analyzed by different simulations. The paper also deals with the question whether the Lookahead Pathology occurs. 
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I INTRODUCTION 

Many challenges have to be solved, when applying 
optimization methods to industrial problems. Possible 
inaccuracies in information are one of the major 
challenges. In general, information is not completely 
known a priori, like it is assumed in mathematical 
optimization theory. Often information changes over 
time or can only be estimated. Even solutions must 
be provided in real time. Both aspects are relevant 
for many industrial applications like the Job 
Scheduling Problems. 

The Monte Carlo Rollout method (MCR) has been 
used successfully in various industrial applications to 
solve combinatorial problems approximately. Here, 
the problem is considered, to assign different jobs 
to different machines as well as the order of the 
production. Machine breakdowns can occur, which 
lead to an interruption of the production ([1]). There 
are several possibilities for the distribution of jobs to 
the machines. Which distribution should be chosen to 
minimize the delay? The knowledge on uncertainties 
should be included into the planning. Therefore a 
stochastic model is necessary to model uncertainties, 
with the aim to assign probabilities to different 
possible future developments.  

II PROPOSED APPROACH 

In order to make decisions in real time, a heuristic 
H is used to determine a solution based on current 
information in many cases. The idea is to improve the 
solution by a Monte Carlo Rollout (MCR) approach as 

meta-heuristic. In this way, the heuristic is combined 
with a stochastic model for simulating future 
developments. This leads to better and more robust 
solutions for optimization problems under 
uncertainties. The MCR approach combines ideas 
from Rollout algorithms for combinatorial 
optimization and the Monte Carlo Tree Search in 
game theory. Therefore, we want to introduce all three 
methods. 

Rollout algorithms ([2], [3]) can be used for 
optimization problems that have a sequential structure, 
i.e. which can be solved by making a sequence of 
consecutive decision steps with a limited number of 
alternative decisions in each step. With an infinite 
number of alternatives a finite selection must be made 
or an abort criterion must be selected. These 
optimization problems can be represented as a search 
tree. Each node is regarded as a decision point and 
each leave of the tree represents a solution. By means 
of the Rollout method, each alternative decision is 
evaluated in order to choose the best alternative. The 
Rollout algorithm iteratively explores all different 
alternatives in the current decision step. It uses a so-
called base heuristic for making decisions in the steps 
following the current decision. The base heuristic 
usually is a fast, rather simple but solid heuristic for 
the problem at hand, that solves the problem in a 
sequential manner. With the help of this base heuristic 
the Rollout algorithm gets an evaluation of the 
alternative at a leaf of the decision tree, namely at that 
leaf that would be reached if the base heuristic would 
be applied after choosing the alternative considered. 
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After evaluating all alternatives in the current step, the 
one that leads to the best results is chosen. In this way 
only a small part of the tree is examined and the 
heuristic guides into the most promising part of the 
tree. If the problem contains N decisions, after (N-1) 
applications of the Rollout algorithm a path from root 
to leaf will be obtained. This path represents the 
approximated solution of the problem. In Fig.1 the 
process of a Rollout evaluation for n alternatives is 
shown schematically. For sequentially consistent 
heuristics, it can be shown, that the Rollout approach 
leads to no worse results than the pure application of 
sequentially consistent heuristic.   

  
Fig. 1. Schematic representation of a Rollout algorithm. 

Monte Carlo Tree Search (MCTS) ([4], [5], [6]) is 
used for problems where no good heuristic was found 
to evaluate a decision. Instead of using a noisy and 
possible misleading heuristic evaluation, the 
alternative decisions are evaluated by means of 
random games. Often there is game-specific 
information about the quality of moves which can be 
used to weight the possible moves. The MCTS 
algorithm includes four steps which are shown in 
Fig.2. The steps are Selection, Expansion, Simulation 
and Back-propagation and they are repeated several 
times to generate the MCTS tree.  

 

 
Fig. 2. Schematic representation of a MCTS algorithm. 

In the first step a node which is not been included 
into the MCTS tree yet is selected. This selected node 

is added to the MCTS tree in step 2, which is the 
starting point of step 3. To avoid an inexact heuristic 
evaluation the evaluation of a node is carried out by 
simulation, also called play-outs. Therefore, all further 
decisions are taken at random. Such random game 
ends in a leaf which can be rated clearly. In the last 
step the MCTS tree is updated with the information 
from the simulation, e.g. by using the Mimimax 
algorithm, like [7]. These 4 steps are repeated up to a 
maximum. The maximum can be the number of nodes 
in the MCTS tree or the runtime of the algorithm.  

The Monte Carlo Rollout method combines both 
approaches to handle sequential optimization 
problems that are afflicted with uncertainties. The 
evaluation of an alternative decision by solving the 
problem further with a simple and fast base heuristic 
is adapted from the Rollout approach. The 
uncertainties are covered through the random selection 
of future situations, by means of a random player as in 
the Monte Carlo Tree Search. So, the optimization 
problem with uncertainties is modeled as a two-player 
game. The first player is the decision maker, which 
decides on the base of a simple heuristic. The second 
player is the random player, which creates new future 
situations by random. The game where both players 
move consecutively is called MCR. With a set of 
different MCRs, an alternative is tested by evaluating 
a set of random future scenarios. So, the long-term 
behavior and robustness against uncertainties of this 
alternative could be analyzed. The MCR method is 
shown schematically in Fig.3. 

 

 
Fig. 3. Schematic representation of a MCR algorithm. 

III APPLICATION 

Considering the application of the Monte Carlo 
Rollout method to a Scheduling Problem, more 
precisely to a Stochastic Dynamic ሺ݉ ൈ ݈ሻ Job Shop 
Problem with due date. Here, several plans are 
available, each with a static heuristic evaluation, 
which results from an objective function. Over time, 
however, machine breakdowns occur, which lead to 
delays. The MCR method is used for decision support 
to choose a robust plan against random future failures. 

Considering jobs ܬଵ, … , ௡ܬ  with given processing 
duration ݀ሺܬ௜ሻ ൒ 0. Each job ܬ_݅ consists of sub jobs 
,௜௝ܬ ݆ ൌ 1,… ,݉	 with 0 ൑ ݀ሺܬ௜௝ሻ ൑ ݀ሺܬ௜ሻ and 
∑ ݀൫ܬ௜௝൯ ൌ ݀ሺܬ௜ሻ
௠
௝ୀଵ . In the ሺ݉ ൈ ݈ሻ Job Shop Problem 
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݊  jobs on ݉	different types of machines are to be 
processed. Each job consists of ݉ sub jobs with true 
positive processing durations. Each sub job is 
processed on one machine type. Each of the ݉	types 
of machines has capacity ݈.	Each job ܬ௜  has a fixed 
predetermined due date FሺJ୧ሻ. This is transferred to its 
sub jobs  ܨ൫ܬ௜௝൯, according to the follow-up relations. 
The aim of the scheduling is to determine the 
execution time for each sub-job of all jobs, taking into 
account capacity constraints. A scheduling plan is 
feasible, if all jobs are completed by the due date and 
all capacity limits are observed.  

To minimize the total delay is an appropriate 
objective function. So, every feasible and complete 
plan is evaluated by this objective function and the 
plans are comparable. This problem can be seen as a 
sequential decision process and is represented by a 
decision tree. The root of the tree is an empty plan. 
Each edge adds a sub job. Hence, each knot is a sub 
plan and each leave is a plan. If a job is added to the 
plan, the execution time and the assignment to a 
machine for each sub-job have to be determined. 
Decisions regarding the execution time of a job are 
selected in order to minimize the objective function, 
taking into account follow-up conditions and capacity 
constraints. 

Heuristics follow only a single path of the decision 
tree and result in sub optimal planning. Possible 
heuristics are: 

 
 ଵ: Starting each sub job as early as possible andܪ
choose the earliest  predetermined due date of all 
unassigned jobs ܫ ⊆ ሼ1,… , ݊ሽ: 
 

J௞	with 	݇ ൌ arg	min
௜	∈ூ

 ௜ሻܬሺܨ	

 
 ଶ: Starting each sub job as early as possible andܪ
choose the latest possible execution time of all 
unassigned jobs ܫ ⊆ ሼ1,… , ݊ሽ: 
 

J௞	with 	݇ ൌ arg	min
௜	∈ூ

௜ሻܬሺܨ	 െ ݀ሺܬ௜ሻ 

 
So far, a deterministic problem has been described. 

Machine breakdowns and the related uncertainties of 
occurrence of breakdowns lead to a stochastic and 
dynamic problem. To model the appearance of 
machine failures a stochastic model is necessary. This 
should take into account the operating time and the 
various demands of different jobs to the machine. In 
practice, a bathtub effect could be observed for the 
failure rate. Either the failure occurs immediately, due 
to defects, or later, due to wear. To reproduce this 
effect the Weibull distribution is used to calculate the 
probability that a machine breakdown occurs during 
the execution of a sub job. The Weibull distribution is 
a continuous probability distribution over the positive 
real numbers. It is frequently used for the study of 

lifetimes and failure rates. Two parameters are 
necessary. Scaling parameters ߣ ൐ 0 is chosen 
according to the characteristic lifetime of a machine. 
The shape parameters ݇ ൐ 0	generates falling failure 
rates for 0 ൏ ݇ ൏ 1 and rising failure rates for ݇ ൐ 1. 
In order to model the bathtub effect two Weibull 
distributions are combined. First with shape parameter 
݇ଵ ൌ 	0.5 to generate falling failure rates, second with 
݇ଶ ൌ 5  to generate rising failure rates. Figure 4 
illustrates the failure rate generated in this way and 
Figure 5 the resulting cumulative distribution function 
of the combined Weibull distribution.  

 

Fig. 4. Failure rates of distributions with ݇ଵ ൌ 	0.5 and ݇ଶ ൌ 5  
and same ߣ ൌ 500. 

 
Fig. 5. Cumulative distribution function of the combined Weibull 

distribution. 

Machine breakdowns cause interruptions in the 
execution of sub jobs for the duration of repairing	݀௥. 
An affected sub job can not be terminated on a 
different machine. Reschedule is necessary to repair 
not feasible plans. A repair heuristic will serve as base 
heuristic for the Monte Carlo Rollout algorithm. Sub 
jobs which have not yet started can be moved between 
machines to ensure all capacity constraints. 
Furthermore, the objective function is to be 
minimized. 

Considering the problem as a game leads to a two 
persons game - the repair heuristic as first player and a 
random disturbance as second player. Player two 
starts. Thus, the stochastic dynamic ሺ݉ ൈ ݈ሻ Job Shop 
Problem has a sequential character. This enables the 
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use of the MCR method to determine an expected 
evaluation of a plan in terms of an objective function.  

Starting from a plan ߨ଴ successive, random 
disturbances are generated and after each disturbance 
a reaction using the repair heuristic follows. In detail, 
in each step of the random player the next machine 
breakdown is fixed with help of the stochastic model. 
The next decision step is based on the repair heuristic, 
which has a finite number of alternatives. The 
number of alternatives arises from the possible 
exchange options. For each alternative MCR 
simulations (playoffs) with search depth ݀  are 
performed. So, at least after ݀ steps, or if the end of 
the planning interval is reached, the playoff terminates 
and the objective function value is stored. For each 
alternative, ܾ playoffs are played and the mean of all 
corresponding objective function values yield the 
MCR rating of this alternative. In contrast to the 
evaluation of the initial plan with the objective 
function, possible machine break downs are 
considered here, too. The decider chooses the 
alternative with the best MCR rating. 

IV RESULTS AND DISCUSSION 

It was considered a (2 ൈ 2ሻ Job Shop Problem with 
due date. Both types of machines are available twice. 
Each job ܬ௜  consists of two sub jobs ܬ௜ଵ  and ܬ௜ଶ  with 
݉ሺܬ௜ଵሻ ് ݉ሺܬ௜ଶሻ	for all jobs ݅ ൌ 1,… , ݊. All generated 
instances cover ݊  jobs and the conditions/operating 
hours of all machines. To build feasible plans the two 
heuristics ܪଵ and ܪଶ are used as well as the heuristics 
using the expected values ॱܪଵ  and ॱܪଶ . The plan 
with the best objective function value is used as 
reference.  

Instance parameters have a large impact. More 
precisely, impacts on the success of the MCR method 
have: repairing time, maximal operating time of 
machines, initial conditions of the machines and the 
due date of the jobs. The first three parameters 
correlate with the due date. The closer the due dates 
are to the planned execution end times, the less room 
for schedule changes. At such time-critical plans 
almost any disturbance means a delay. The smaller the 
repair time, the better it is absorbed by the buffer 
between execution end time and due date. The greater 
the repair time, the greater is the resulting delay. Also 
the shape parameter of the Weibull distribution in the 
underlying stochastic model has a significant impact. 
As larger the shape parameters as fewer distributions 
occur. Also, the larger the operating hours of a 
machine, the more likely are the occurrence of 
failures. 

The results demonstrate the potential of the MCR 
method. Significant improvements are possible, but 
related to search depth ݀ and search width	ܾ. Figure 6 
represent exemplary the mean distance to the best plan 
(created by ܪଵ, ,ଶܪ	 ॱܪଵ	or	ॱܪଶ) averaged over 1000 

instances for search depths ݀ ൑ 3000  and different 
search widths, from ܾ ൌ 1 to ܾ ൌ 50. The dashed line 
is the mean value of the objective function by using 
only the heuristic.  

 

 
Fig. 6. Mean distance to the best plan averaged over 1000 instances 

with different ݀ and ܾ (ߣ ൌ 3000, ݀௥ ൌ 30). 

As expected, an increase of search width ܾ results 
in better results. The results demonstrate that widths 
ܾ ൏ 4  are not practical. Worse results are obtained 
with increasing depth and some of them are even 
poorer than the heuristic results. The impact of search 
width is not as large as expected. So, an increase of 
the width is useful, but no more above a certain value 
ܾ∗ . In the selected model, ܾ∗ ൌ 20	 is independent 
from shape parameter ߣ, being seen in Figure 7. With 
increasing width more possible realizations of each 
plan are considered. Are the initial operating hours of 
a machine large, it is very likely that the machine 
failures. Due to the time-sensitive plans, the time of 
the failure is insignificantly, since any disruption leads 
to delays. Therefore a few simulations per plan are 
sufficed.  

The search depth ݀ is specified in time units. Only 
increasing the depth, without adapting the width, has a 
negative influence on the results, see each of the first 
lines in Figure 7. The greater the depth, the more gain 
in information about future events. But at the same 
time there are a much larger number of possible 
scenarios. Therefore, the approximation becomes 
worse with constant width. 

The Lookahead Pathology occurs for many 
different parameter combinations. Here, starting with 
a search depth ݀ ൌ 1 an increasing depth leads first to 
improved results and later to poorer results, see Fig. 6. 
This effect is strongly dependent on the shape 
parameter ߣ of the Weibull distribution. As larger ߣ is 
as fewer disturbances occur. In this model, with a 
larger ߣ	  one disturbance per machine in average 
occurs. The search depth should not exceed the period 
of expected first failures. Whether there is a second 
failure of a machine is random according to the 
stochastic model. The influence of a breakdown 
immediately after the repairing is very large. 
Misinterpretations of the MCR method are likely. 
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Therefore, the optimal depths are ݀∗ ൌ 1500  for 
ߣ ൌ 3000  and ݀∗ ൌ 2000  for ߣ ൌ 4000.	 In contrast, 
with ߣ ൌ 2000	  several breakdowns per machine on 
average occur. In this case, a potential second 
breakdown is detected with increasing depth ݀. Here, 
the Lookahead Pathology does not occur.  

 

 
Fig. 7 Mean distance to the best plan averaged over 1000 instances 
with different ݀ and ܾ (݀௥ ൌ 30). Shape parameter of the Weibull 

disturbance [a] ߣ ൌ 2000, [b] ߣ ൌ 3000, [c] ߣ ൌ 4000. 

 

V CONCLUSION 

We have shown the potential for improvement by 
use of the Monte Carlo Rollout method by means of a 
Job Shop Problem. The results of a heuristic based on 
current information could be improved significantly. 
By using the MCR method as meta-heuristic the 
heuristic is combined with a stochastic model for 
simulating future developments. Better and more 
robust solutions with respect to future developments 
can be achieved. It has been shown, that an 
appropriate choice of search depth and search width is 
needed. The investigation has shown that increasing 
the width has a positive influence on the result. 
However, it may exist a width beyond which, the 
results does not improve anymore. With an increasing 
search depth, more information on future 
developments is included. But to interpret these 
correctly, the width must be increased, too. The 
Lookahead Pathology could be detected and should be 
considered, too. 

VI ACKNOWLEDGMENTS 

We acknowledge the financial support from the 
German Federal Ministry of Education and Research 
(BMBF) under the project PLUSS. 

VII REFERENCES 
[1] M. Rosner: Untersuchung des Monte-Carlo-Rollout-

Verfahrens fuer Optimierungsprobleme unter Ungewissheit, 
Diplomarbeit TU Dresden, 2013.  

[2] D.P. Bertsekas, J.N. Tsitsiklis, C. Wui: Rollout Algorithms for 
Combinatorial Optimization, Journal of Heuristics, 3, 245–
262, 1997. 

[3]  D.P. Bertsekas, D. A. Castanon: Rollout Algorithms for 
Stochastic Scheduling Problems, Journal of Heuristics, 5, 89-
108, 1999. 

[4]  G. Chaslot, S. Bakkes, I. Szita, P. Spronck: Monte-Carlo Tree 
Search: A New Framework for Game AI, Proceedings of the 
Fourth Artificial Intelligence and Interactive Digital 
Entertainment Conference, 5, 216-217., 2008. 

[5] L. Kocsis, C. Szepesvari: Bandit based Monte-Carlo Planning, 
ECML-06. Number 4212 in LNCS, Springer, 5, 282-293, 
2006. 

[6] B. Brügman: Monte Carlo Go,1993 
[7] C. Browne, E.J. Powley, D. Whitehouse, S.M. Lucas, P.I. 

Cowling, P.Rohlfshagen, S. Tavener, D. Perez, S.Samothrakis, 
S. Colton: A survey of Monte Carlo tree search methods, 
IEEE Trans. Comput. Intell. AI Games, 4, 1, 2012. 

 
 


