

Environment. Technology. Resources, Rezekne, Latvia

Proceedings of the 10th International Scientific and Practical Conference. Volume III, 87-91

ISSN 1691-5402
© Rezekne Higher Education Institution (Rēzeknes Augstskola), Rezekne 2015

DOI: http://dx.doi.org/10.17770/etr2015vol3.506

Modern approaches to reduce webpage load
times

Aleksejs Grocevs, Nataly Prokofyeva

Riga Technical University, Faculty of Computer Science and Information Technology.
Address: 1/4 Meza str., Riga, LV-1048, Latvia

Abstract. Nowadays, many modern websites offer a variety of information services, providing a dynamically

generated content for the end user. However, the more users are trying to obtain such content, the slower becomes its
loading time in their browsers. This article explains the mentioned problem in detail, as well as examines the roots of
this problem.

Keywords: Loading time, performance, web site.

I INTRODUCTION

Nowadays, applications deal with many different
tasks. With the appearance of the Internet, it became
possible to solve these tasks remotely, quickly
transferring large amounts of information. End users
consider it a favorable way to work with their data,
regardless of their geographical location and available
forms of communication. These and many other
factors led the software development industry to look
for a different set of content transfer opportunities via
the Internet, using a traditional web user-interface.
Today, websites are filled with user-friendly
interfaces, animations and other appealing objects that
end users may desire. But before all this appears in the
user’s eyes, it has to go through the server to the user's
browser, and whilst the amount of data increases, the
time necessary to exit the path, is growing [1]. This

paper examines causes of the increase of this time and
offers reduction options.

II INFORMATION GATHERING

Using Firebug extension for Mozilla Firefox
browser, developers can view the division of time
consumed to process a page request - until the
moment of full loading and being displayed in the
browser. By exploring the load time of a number of
popular Web-sites with this tool, it is possible to see
that the load time is mostly spent on data transfer from
the server to the browser; for example, in the case of
facebook.com all elements of the downloading queue,
according to Fig. 1, even after 12 minutes of
download, haven't loaded completely.

Fig. 1. Facebook.com page element downloading time graph

Aleksejs Grocevs, et al./ Environment. Technology. Resources, (2015), Volume III, 87-91

88

The main page load time distribution is shown in
the Fig. 2 separately. It can be observed that most part
of the page’s loading time is taken up by data
transmission. This data from the server can be divided
into static HTML text with images and dynamic
content, such as JavaScript (JSON) and Flash. Basing
on the file list load time, a conclusion can be made,
that most part of the data comes from different
domains, which is done to increase the count of
different data sources. Furthermore, it can be noticed,
that even after a long wait some files are not fully
loaded, which suggests possible problems with
external data providers.

Fig. 2. Facebook.com page loading time distribution

III MULTIPLE FILE CREATION

One of the factors affecting the load time is
multiple CSS file creation, although this content may
be transferred as one joined file. Similarly, it permits
to process JS-format files with an existing JavaScript
code [2]. To impose additional complexity during the
processing of an abnormally large file, it is possible to
merge these files in the deployment phase, when it is
deployed on a web server, for example, using Ant [3]
or Maven [4] scenarios. This approach not only speeds
up data transfer via the Internet, but also reduces the
hard drive usage frequency, without requiring frequent
reference to the hard disk file from operating system
to read next.

Although usually frequently requested files are
already in memory, and the increase of server
performance will not be large, the main advantage of
this approach is the required acceleration of
information transfer, which results not only in the files
merging and them being read faster from the media,
but it also eliminates unnecessary resources overhead
by reducing HTTP header transfer amount. Excessive
amount of headers is shown in Fig. 3. The transferred
header size (1051 bytes) is twice the size of the data
received.

Fig. 3. News site request and response header size comparison

IV CHOOSING INCORRECT PROTOCOL

In addition to static type, modern websites also
provide dynamic content, which varies according to
the requests and also to the current status of the users
or, similarly, according to the instantaneous requested
data modifications. Although the majority of sites
send new browser data in plain-text format to the
client (or as ready-to-insert HTML-code), the usage of

specialized protocols, designed for better use of
Internet channels, can reduce the total data transfer
time. For example, these protocols could be:

A. AMF protocol

AMF is created by Adobe messaging protocol,
structure of which was published in 2007. It is
intended for binary data transfer between applications,
which are operated on the Flash platform and written

Aleksejs Grocevs, et al./ Environment. Technology. Resources, (2015), Volume III, 87-91

89

on the ActionScript base, all run on a server that can
be either Flash Media Server (or any other media-
server) or server-side application, written in PHP,
Java, Ruby or other language. Before transmission, all
data is serialized and all lines of text are encoded in
Unicode.

B. RTMP

Real-Time Messaging Protocol – also developed by
Adobe, allows to send not only video and audio data,
but also other information, that makes it possible to
build applications without using additional
unnecessary resources to maintain service.

C. XML

eXtensible Markup Language, - a simplified SGML
(Standard Generalized Markup Language) subset,
which is designed for data description and a form of
storage, that can be understandable to both computers
(easy to read data objects) and humans.

D. JSON

JavaScript Object Notation – JavaScript language
object, which can be recognized by the browser's
JavaScript engine and treated as a ready-to-use object,
without further action. The Fig. 4 shows the received
code, which was converted into JavaScript object with
key-value pairs.

Fig. 4. JSON data evaluation as JavaScript object

E. HTTP2

Second version of HTTP protocol draft has been
finalized in the beginning 2015 year and currently is
awaiting RFC allocation and standardization
finalization [5]. It is too early to estimate
implementation and usage benefits, since only latest
developer nightly builds of modern browsers supports
this protocol, however it must significantly improve
data transmission speed, since it is binary protocol as
well as AMF and RTMP, and is built upon SPDY
protocol extension, including stateful header
compression (in HPACK) [6].

V IMPACT OF NETWORK PERFORMANCE

Although the homepage had been already prepared
for viewing in ~3 seconds after making the request, its
component loading could affect the parallel
connection limit. In the file list it can be seen, that the
CSS files are transmitted simultaneously. However, all
browsers have a fixed maximum of connections to a
particular domain by default and in accordance with
W3C recommendations [7], so that Internet Explorer
9 can be used for four simultaneous connections,

Chrome 12 - for six; Firefox 7 - for fifteen and Opera
11 - for sixteen.

This means you can simultaneously download from
four to six files, depending on the browser used. The
creation and closing of the connection takes a long
time, that is why all modern browsers (including web-
servers) can keep continuous or Keep-Alive
connections, which makes it possible to use a single
connection to multiple file transfers. The only
requirement is that the server must indicate how many
seconds it will allow for maintaining the connection
without the actual data transfer. This is done to avoid
an overflowing connection pool on a web-server,
which is typically around 100 sockets providing client
connection. If the first 100 clients connect to the
server and continue to do so, it will be impossible to
serve other clients because of the pending data
requests from the user-server.

As one part of the solution we can suggest to use
analysis, which aims to define the average and
maximum loading times per element page. Using
crawl results, it will be possible to determine the
required time needed to apply the server-side Keep-
Alive interval [8]. The client connects to the site,
obtains all required files and then the server
disconnects the client to make room in the pool for the
next connection, while the client processes
information and displays it to the end user, who will
spend some time viewing the obtained information
and will most likely not make more requests for some
time.

A different approach may give the user an ability to
increase the competitor-requested number of files by
using other (sub) domains, as shown in Fig. 1 - the
JavaScript and CSS files are loaded from a separate s-
static.ak.facebook.com domain, i.e., they are assigned
in addition to the number of connections. Usually,
such way of division is implemented to separate the
static content and use of the web servers with high
static file handling capabilities, such as Lighttpd and
Nginx, designed especially to serve the heavy duty
sites and to provide minimal configuration/
extensibility options.

VI UNIQUE DATA USAGE

In order to enable updated data transmission in the
background when making a request for information
that the user's browser already had, it is possible to use
built-in data storage in user's computers. Studies have
shown that Adobe Flash plug-in is available on 99%
[9] of all computers that have Internet access. It
enables data transfer processing to use options
provided by technology, one of them being Local
Shared Objects [10].

Local Shared Objects (100KB in size by default) is
a flash cookies file with a .sol extension, which in
itself contains an array that uses the string as a key
and any ActionScript language object as a value. The

Aleksejs Grocevs, et al./ Environment. Technology. Resources, (2015), Volume III, 87-91

90

user can specify a maximum size of Shared Objects,
which can be 0kb, 10KB, 100KB, 1MB, 10MB or
unlimited. The available amount of developers is
relatively high. They keep a constant part of the site,
occasionally checking their integrity and, if necessary,
replacing any necessary parts.

Of course, this approach has its drawbacks: it is not
possible to access another domain’s Shared Object,
even by using sub-domain’s request because it
contradicts with Adobe Flash Sandbox Restrictions
rules, and, by default, if the Shared Object approaches
the size of 100KB, the user will receive a message and
a demand for additional space needed for granting
permission, which may confuse users who are not
accustomed to it. Although this technology allows
creating a local caching, it is generally intended for
small data storage configurations, rather than actual
file-keeping.

Like Adobe Flash, Microsoft Silverlight supports
their storage facility known as ISOSTORAGE
(isolated local storage), which is separate from the
browser's temporary directory and is sized 1MB. The
user, just as in Flash, may change its size in steps of
100KB, 1MB, 5MB and 10MB.

Unlike the Adobe Flash technology, Microsoft
Silverlight provides access to stored resources directly
from JavaScript code without creating additional
difficulties existing in Flash JavaScript
interaction. Another opportunity that developers may
use - ISOSTORAGE format remembers the file
system, i.e. it is possible create files and folders, copy,
delete, rename and perform other activities that are
available with a conventional file system.

VII WEAK CACHING IMPLEMENTATION

All the files in the example are sent from the
Apache Web server that does not use external caching

capabilities, which negatively affects the load time.
The majority of web sites update their information no
more than a few times a day, making it possible to use
reverse proxy caching options to speed up data
transfer. Conventional proxy server acts as a mediator
and usually does not belong to a web page owner.
Their task is to maintain some of the traffic that passes
through until the next time another user will request
the same data to issue from their storage. These
proxies tend to be regarded as direct (forward).

Contrariwise, reverse proxy is located close (both in
physical and network routing sense) to the web server
and mainly serves users through the web server, and
not directly.

Reverse proxy can exempt web server from the data
compression, and during transition proxy web
server does not require small amounts of data transfer.
Almost all modern browsers support data compression
- they are responsible for sending the Accept-
Encoding header in the request. Its value can be GZIP,
which means that the browser supports and requests
web server capacity-encoded page; or DEFLATE,
which means that the browser is not built, or has
disabled compression processing. From these two
values and the sequence from your options/settings of
your web server may be concluded what type of
content to transfer in response to the request.

If the compression is available and settings are
enabled, the server, before sending the final result,
undergoes the GZIP filter that compresses data,
particularly the text. This can be observed in data
being compressed up to 100 times.

The fact that compressed data is received in
headers, symbolized by Content-Encoding and valued
as GZIP, which compresses the received requests and
responses, can slightly reduce the overall load time.

Fig. 5. Reverse proxy implementation performance boost

Another objective that can be attained by a proxy
server is the load time balancing that distributes
requests among multiple available web servers,
depending on their workloads and opportunities to
serve new demand [11]. Similarly, the mission can be
considered a static page generated in storage and
transmission from the cache, rather than a request to
the web server where the page will be generated by a
script, slowing down the transfer process. In Fig. 3 we
can see that in the file, transferred from server, two

additional headers appear, which indicates that the
server uses reverse proxy usage, Varnish, - it is part of
Via, a value of 1.1, used in the HTTP protocol version
and in the name of the proxy software X-Varnish. (All
HTTP headers that begin with X are not defined in
HTTP 1.0 and 1.1 specifications, and are freely
available for server-specific information). Its value is
the request identifier, by which problems can be found
in logs. Another significant reverse proxy server,
which can also serve as a direct server, is Squid. It is

Aleksejs Grocevs, et al./ Environment. Technology. Resources, (2015), Volume III, 87-91

91

used in the Wikipedia Foundation, and the web-
server/proxy ratio is 3:1 [12]. Reverse proxy usage
enables reducing the requests to the main web server,
in certain cases up to four times, as shown in Fig 5.

VIII CONCLUSIONS

In this article web site load time problem has been
examined, including additional hints on how to solve
occurring problems. Multiple similar file transmission
and extra-header addition were described as server-
side influencing factors. Browser’s inability to persist
already received data and attempts to run unprepared
JavaScript code are considered as the main client-side
problem. Many CSS and JavaScript file-merging
processes that were described significantly affect not
only the file transfer speed of the network, but also
increases the load- and parse time in the user's
browser. As a solution, we offered to combine similar
content files into one, just like both the CSS and
JavaScript files in the support type, and this
combination does not affect the final result.

Furthermore, sending and receiving large headers
was also discussed. Since servers usually do not need
headers to identify users of the static content files, it is
better to remove additional unnecessary headers from
all static content either using server side – the same
web server software, or the use of programming
languages - or JavaScript for removing unneeded
request headers.

Another element on which this article is focused:
choosing the most appropriate protocol. Many
websites in AJAX queries return the JavaScript code,
which overfills the browser - these responses take time
and increase the total amount of data. It is possible to
use JSON or JSONP protocols only for transferring
data and information to determine which one from
pre-loaded functions to call.

From the set of already implemented
improvements, we described the distribution of static
files across multiple servers/domains using additional
servers and other domain names in order to
circumvent the browser restrictions. In addition, the
reverse proxy was studied, which was already
encountered in examples and also reduced the overall
load time.

IX REFERENCES
[1] S. Souders, High Performance Web Sites: Essential

Knowledge for Front-End Engineers, O'Reilly Media, Inc,
2007.

[2] R. Page, Website Optimization: An Hour a Day, John Wiley &
Sons, 2012

[3] J. Fuller, Apache Ant Recipes for Web Developers, FastPencil,
Inc, 2010.

[4] Srirangan, Apache Maven 3 Cookbook, Packt Publishing, 2011
[5] Hypertext Transfer Protocol version 2 [Online]. Available:

http://www.rfc-editor.org/internet-drafts/draft-ietf-httpbis-
http2-17.txt [Accessed: Mar 15, 2015]

[6] HPACK - Header Compression for HTTP/2 [Online].
Available: http://http2.github.io/http2-spec/compression.html
[Accessed: Mar 15, 2015]

[7] W3C, HTTP/1.1 Connections, [Online]. Available:
http://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html
[Accessed: Mar 15, 2015]

[8] S. Shivakumar, Architecting High Performing, Scalable and
Available Enterprise Web Applications, Morgan Kaufmann,
2014

[9] Adobe Inc, Adobe - Flash Player Statistics, [Online].
Available: http://www.adobe.com/products/player_census/
flashplayer/ [Accessed: Mar 15, 2015]

[10] Adobe Inc, Adobe - Adobe Flash Player : What Is a Local
Shared Object, [Online]. Available: http://www.adobe.com/
products/flashplayer/articles/lso/ [Accessed: Mar 15, 2015]

[11] H. ElAarag, S. Romano et al, Web Proxy Cache Replacement
Strategies: Simulation, Implementation, and Performance
Evaluation, Springer Science & Business Media, 2012

[12] Possibility Outpost, High Scalability - High Scalability -
Wikimedia architecture [Online]. Available:
http://highscalability.com/wikimedia-architecture [Accessed:
Mar 15, 2015]

