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Abstract. In circumstances, when it is important to replace insulation materials with high content of emissions 

during production it is necessary to create new heat and sound insulation material, which eliminates CO2 emissions, 
develop its production techniques and technological machinery – raw material chopper, pulp mixer, termopress, 
dryer chamber, formatting knifes, determine technical control parameters and control equipment, develop 
mathematical model of the material and calculation methods for design works. It is necessary to design, manufacture 
and experimentally test the respective technological equipment for insulation production pilot plant. To get exact 
physical parameters it is necessary design, manufacture and test unique laboratory equipment for determining the 
properties of insulation material. The mathematical model describing the dynamics of propagation and retention of 
heat over fibre insulation coating by taking "inner" specificities (graininess and porosity of layered structure of the 
considered fibre insulation) of heat insulator into account is proposed in the present paper. 
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I INTRODUCTION 

As it is known (see, for instance, [1], [2] and 
respective references given in these), in the capacity 
of fibre material could be used wide range of 
materials, both organic and inorganic, for instance, 
cellulose, fabrics, wool, cotton, glass, rockwool, basalt 
fibre, etc. As the insulator could be used chopped 
polystyrene, polyurethane, cork, peat, bark, etc. 

 

 
Fig. 1. Foamed polystyrene particles are bonded with cellulose 

fibers. 

 

Binding together of the insulation particles, forming 
self-supporting layer of insulation material, useful 
both for thermal and for acoustic insulation (see, for 
instance, [3]). Remarkable positive property among 
others is ability of the material to accept and release 
water vapour – "breathe" like most of the natural 
materials.  Other – it is stable against setting – 
opposite to pure cellulose wool insulation. 

New insulation has been developed by the Liepaja 
University scientists. It is based on mix of insulation 
material particles enclosed in fibrous mass, having 
insulation properties (as it contains trapped air micro 
pockets) in the same time it. 

The brief discussion on heat retention and energy 
conservation of the fibre insulation coating: fibre 
insulation coating can provide energy savings of 20-
40% depending on ambient temperature, contents, 
weather conditions and application thickness. 
According to test data and results from applications 
(see, for instance, [4]-[8] and respective references 
given in these) efficiency is higher in conditions with 
exposure to convection-based cooling compared to 
uninsulated surfaces. Efficiency in convection-based 
cooling conditions is roughly comparable to 
conventional natural materials, but the difference is 
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that coating-based insulated equipment will 
experience a slow heat drop and faster recovery 
compared to a slow heat drop and slow recovery in a 
conventionally insulated structure. 

Fibre insulation coating relies primarily on radiant 
heat blocking while conventional material slows down 
heat transfer with dense mass. The coating's high 
saturation of insulation particles provides very low 
emissivity and transmittance characteristics that block 
radiative heat transfer. While there is some conductive 
heat transfer blocking, that's a smaller contribution 
compared to radiative blocking. A good analogy for 
low emissivity is "Low E" window coatings that also 
work by blocking solar radiation wavelengths' heat 
transfer. These two heat transfer characteristics are 
very important in understanding how the thin coating 
blocks transfer of radiant heat energy.  

Conventional insulation material's heat transfer 
rating test is conducted at 0% humidity and 20oC. 
However, in the real world material becomes saturated 
with moisture at least up to the volume of relative 
humidity of surrounding air. Not a problem in very 
dry conditions, however, in most of the world that 
translates to 40-60% relative humidity and simply a 
matter of time before almost all mass-based 
insulations are saturated to the local relative humidity 
level. At only 30% moisture content, chopped 
polystyrene's heat conductivity is reduced almost to 
that of water at 60oC and very close to window glass 
at 80oC (see, for instance, [6], [9]). The advantage of 
coating is that it will not accept moisture and retains 
low heat transfer characteristics indefinitely.  

And just as conventional insulation has a point of 
diminishing return when it comes to thickness; fibre 
insulation coating's effectiveness also becomes 
marginal beyond certain thicknesses at varying 
temperatures. Because radiant barriers react with 
thermal energy, they're useful when you have a heat 
source and do not store the heat energy to maintain a 
thermal battery as do mass-based conductive 
materials. This means that fibre insulation coating is 
very effective on heated equipment and much less so 
on unheated equipment applications such as 
preventing cold water lines from freezing. Insulation 
coating is effective in cold spaces with condensing 
surfaces based on it's low transmittance characteristics 
that essentially "take the chill off" and raise them 
above the dew point ([6], [7], [9]). Overall, insulation 
coating has many proven application in the field and 
can also be combined with conventional materials for 
solutions that leverage the best qualities of both. 

II MATHEMATICAL MODEL FOR  DYNAMICS 

OF PROPAGATION AND RETENTION OF HEAT 

OVER FIBRE INSULATION COATING 

In this section we propose the mathematical model 
describing the dynamics of propagation and retention 
of heat over fibre insulation coating by taking "inner" 

specificities (graininess and porosity of layered 
structure of the considered fibre insulation; see, for 
instance, [5], [8], [10] as well as [11]) of heat insulator 
into account. It should be noted that the proposed 
model has its limitations: it describes only "internal" 
physical processes includes: 

 heat propagation in the insulation material; 
 mechanical process, related to tensions in 

material structure and differences in elasticity of 
said material under the influence of uneven heat 
spreading in the insulation material, which has 
been regarded as non-homogeneous layered 
structure. 

Thus, the proposed mathematical model has the 
following statement: 

1. Four equations concerning sought-for 

functions  , , ;T T x y z t  and  ,u x y  
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2. Initial condition 
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3. Eighteen boundary conditions concerning both 

the thermal field  , , ;T T x y z t  (six boundary 

conditions) and the thermoelasticity  ,u x y  

(twelve boundary conditions) 
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In the proposed model (1)-(22) there are the 
following notations and assumptions: 

     , , : 0, , 0, , 0,
def

x y zD x y z x L y L z L        
 is geometric configuration (the closed 3D 
domain) of the insulation material that has a 
rectangular shape with the thickness / depth ;zL  

 xL  and yL  are the length and the width of the 

rectangular insulation material, respectively; 
 int D  is an open domain that  signifies  interior 

of the domain :D  int ,
def

D D D   D  contains 

the frontier points of the ;D  

 endt  is the time within a period of which we 

investigate the thermal processes occurring 
interior of the insulation material; 

 the sought-for function  , , ;T T x y z t  is the 

temperature (or rather the thermal field) in the 

considering point  , ,x y z  of the insulation 

material at the time moment ;t  

 the prescribed function  , , 0k k x y z   is the 

heat conductivity coefficient in the considering 

point  , ,x y z  of the insulation material; 

 the prescribed function  , , 0x y z    is the 

density of the insulation material in the 

considering point  , ,x y z  of the insulation 

material; 

 the prescribed function  , , 0c c x y z   is the 

specific thermal capacity of the insulation 

material in the considering point  , ,x y z  of the 

insulation material; 

 the prescribed function  , , ;f f x y z t  is the 

power density of external heat sources applied to 

the considering point  , ,x y z  of the heat 

insulator at the time moment ;t  

 the sought-for functions  , ,xx xxu u x y  

 ,xy xyu u x y  and   ,yy yyu u x y  are the 

components of mechanical stress and 

thermoelasticity  ,u x y  under  assumption of 

ignoring any changes / influences in the direction 
of the axis ;OZ  

 , , 1 2 3

def

x y z
T T T

T e e e
x y z

  
      
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  

 is the 

gradient of thermal-vector field, where 

 1,3ie i 


 are unit vectors located on the 

coordinate axes  , , ,OX OY OZ  respectively; 

 the prescribed function  , ,
def

l l
l

x y z
l T

  
 


 

is the linear thermal expansion coefficient (see, 
for instance, [12]); 

 the prescribed function  , ,
def

l l
F l

E E x y z
S l


 


 

is the modulus of elongation (so-called "Young 
modulus"; see, for instance, [13], [14]), which 
characterizes the deformation taking place in the 

considering point  , ,x y z  of the heat insulator 

surface S  under the impact of temperature 
voltage both sides relative to the heat insulator 
(i.e. from the outside and on the inside of 
premises): this Young modulus characterizes 
also the properties of the heat insulator to make 
resistance to tension at the elastic deformation 
under the impact of the temperature voltage; 

 the prescribed function  0 0 0
, , ;

t
T T x y z t

 
  is 

the initial temperature in the considering point 

 , ,x y z  of the insulation material; 
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 the boundary functions  0 , ; ,xT y z t   , ; ,LxT y z t  

 0 , ; ,yT x z t   , ; ,LyT x z t   0 , ; ,zT x y t  

 , ; ,LzT x y t   0 ,x
xxu y    ,Lx

xxu y   0 ,y
xyu x  

  ,Ly
xyu x   0 ,y

yyu x    ,Ly
yyu x   0 ,x

xyu y    ,Lx
xyu y  

 0x
yyu y  and  Lx

yyu y  are assumed as known 

functions in their applicable / definitional 
domains. 

In order to make sure that the system of four 
equations (1)-(4), which describes the interrelated 

processes generating temperature field  , , ;T x y z t  

and thermoelasticity  , ,u x y  had a physical 

determinacy (i.e. physical meaning), it is necessary to 
have some initial information of quantitative and 
qualitative patterns (see, for instance, [4], [5], [15]-
[17] and respective references given in these). The 
initial condition (5) and the boundary conditions (6)-
(22) form the required quantitative information. As 
regards the required information of qualitative pattern, 
its forming mostly depends on the chosen methods of 
analysis and solving the constructed model. 
Obviously, the less constrains are imposed on the 
model, the wider the range of application of this 
model becomes. Therefore, it makes sense to pose a 
question on finding the optimal set of constrains of 
qualitative pattern. However, in view of the fact that 
we cannot solve the proposed model (1)-(22) in 
present paper, the formulated below constrains of 
qualitative pattern are conditioned only by 
mathematical correctness of the equations (1)-(4): 

    1,2, , ; int 0, ;endT x y z t C D t     

     2, int 0, ;zu x y C D L  

    2
0 , , .T x y z C D  

Thus, the proposed model (1)-(22) is the complete 
statement of the initial-boundary-value problem for 
investigation of the dynamics of propagation and 
retention of heat over fibre insulation coating by 
taking "inner" specificities of heat insulator into 
account. The analytical and / or numerical solution of 
the proposed model (1)-(22) will allow finding the 

sought-for functions  , , ;T x y z t  in the domain D  

and         , , , , , ,
def

xx xy yyu x y u x y u x y u x y  in the 

domain  0, ,zD L  and consequently, in the time-

interval 0, ,endt    during which the thermal processes 

occurring interior of the insulation material are 
investigated, we can completely determine the thermal 
field and the thermoelasticity of the considered 
insulation material having a "parallelepiped" shape 
with spatial measurements .x y zL L L   

III CONCLUSIONS 

In this paper we formulated boundary conditions, 
among which only one is the second kind boundary 
condition (so-called the Neumann condition), while 
others are the Dirichlet boundary conditions. This is 
due to the practical point of view: as a rule an 
experimental method, which allows to realize 
boundary functions of the first kind, is an easier 
technique (however, such approach is not always 
expedient!). In addition, in present paper we 
formulated three conditions / constraints of qualitative 
pattern (one of many possible variants for constructing 
the qualitative constraints), the implementation of 
which together with the formulated boundary 
conditions and the initial condition unambiguously 
ensures mathematical correctness of the proposed 
model. 

Qualitative analysis of the proposed model and / or 
its solving can favour for profound investigation and 
understanding of the thermal and thermomechanical 
processes occurring in the insulation materials, and 
thereby can improve the functionality and reliability 
of heat insulators. 

To conclude with, let us note that authors of this 
paper are intended to continue the further 
investigation taking the benefit of both qualitative and 
quantitative studies for the proposed model (1)-(22) as 
well as to develop the stable analytical and numerical 
methods for their solution ensuring the corresponding 
computer-based implementation. 
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