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I.	 Introduction

In the present paper, we propose an analytical approach 
for solving the 3D unsteady-state boundary-value 
problem for the second-order parabolic equation with the 
third type boundary conditions in two-layer rectangular 
parallelepipedic domain. Such type problems arise in 
particular at study of metal concentration dynamics in 
the peat blocks (for instance, see [1]-[5] and respective 
references given in these). Mathematical statement of the 
considered problem is taken from the article [1], where the 
problem was solved by combination of the two approaches: 
firstly, the averaging method in the vertical direction (i.e. 
in height) and two horizontal directions (i.e. in width and 
in length), and, then, the obtained 2D problems have been 
solved by the standard/classical analytical methods. As 
opposed to the combinational approach suggested in [1], 
in the present paper, we do not use approximation methods 
at all (basically, result of application of the averaging 
method always is approximate).

II.	 Mathematical formulation of problem

Denote by ixΩ  -thi  ( )1,2i =  layer of two-layer peat 
block, which has shape of rectangular parallelepiped: 
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Now we formulate a mathematical model 
describing the dynamics of metal concentration in a 
two-layer peat block: it is required to find functions 
( ) [ ] ( )1, : 0, , 1, 2 ,i ix ENDc x t t iΩ × → =¡  which satisfy

•	 diffusion equations with sources
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•	 initial conditions
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•	 the following boundary conditions given:

−	 at the trailing wall in the form of von Neumann 
condition
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−	 at the front wall in the form of Robin condition
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−	 at the left-side wall in the form of von Neumann 
condition
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−	 at the right-side wall in the form of Robin 
condition
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−	 at the lower ( by 1i = ) and the upper (by 2i = ) 
bases in the form of Robin condition
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•	 matching conditions given at the bedding 
interface [6]
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•	 all 12 consistency conditions linking the initial 
and boundary functions from the constraints (2)

(7).

In the mathematical model (1)(8) it is assumed that all 

numerical parameters ( )0 1,3 ,iL i> =  ( )0 1,2 ,iH i> =  

( )0 1,2; 1,3 ,ijD i j> = =  ( )0 1,2; 1,3ij i jλ > = =  

0,ENDt >  and all functions except functions ( )1 ,c x t  and 
( )2 , ,c x t  which stand for the desired metal concentrations, 

respectively, in the first and second layers of the peat 
block, are a priori given.

Remark 1. If in the mathematical model (1)(8) we 

assume that: (a) ( ) ( ) ( )1 2 0, 1, 2 ,i ic c i= ≡ =g g  (b) boundary 

functions ( ) ( ), 1, 2; 1,3ija i j= =g  do not depend on time 

,t  then the model (1)(8) will completely coincide with 
the mathematical model (1.1) from [1], in which the 
physical interpretations of all the initial data - numerical 
parameters and functions are exhaustively described. 
Therefore, in this paper we will not describe the physical 
meaning of the initial numerical parameters and functions 
of the model (1)(8): they have the same meaning as in [1]. 
End of Remark 1.

The mathematical model (1)(8) can be solved by two 
different approaches. The first approach is a more universal 
approach for solving wide classes of initial-boundary value 
problems in layered regions with layers, whose physical, 
chemical, etc. characteristics are different. The main idea 
of the first approach is to reduce the mathematical model 
(1)(8) to the Fredholm integral equation of the first kind, 
and the subsequent procedure for applying Tikhonov’s 
regularization method to the obtained integral equation 

[7], [8]. In view of the strict requirements for the maximum 
volume of articles, in this paper we will not consider the 
necessary procedures for performing the first approach. 
The essence of the second approach consists of applying 
method of separation of variables and constructing the 
Green’s function (for instance, see [6] that is one of the 
best mathematical textbooks ever written). This method 
of solving initial problems (a Cauchy problem, when the 
region in which the process is studied is an unbounded 
region), boundary-value problems (in the case when the 
steady-state process is studied, or the process is studied 
at a time sufficiently far from the initial moment of the 
process) and initial-boundary value problems is a more 
“traditional” approach in the sense that this technique 
is, firstly, thoroughly studied in almost all courses 
of equations of mathematical physics and/or partial 
differential equations, and, secondly, is widely used in the 
study of various kinds of mathematical models described 
in the language of initial, boundary and initial-boundary 
problems for partial differential equations, in particular, 
for hyperbolic, parabolic and elliptic types of differential 
equations. In this paper, the second approach is chosen 
as the analytical method for solving the mathematical 
model (1)(8) – the method of separation of variables and 
construction of the corresponding Green’s function.

III.	 Application of the method of 
separation of variables, and construction of 

the corresponding Green’s functions

So, let us consider the initial-boundary value problem 
(1)(8), and try to find its solution by applying the method 
of separation of variables. To do this, we first formulate, 
as is customary in the method of separation of variables 
[6], two auxiliary boundary-value problems - the problem 
AP1 and the problem AP2, in each of which the equation 
is homogeneous.

A.	 Formulation of two auxiliary boundary-value 
problems

Auxiliary problem AP1. It is required to find the 
function 0 ≡ ( ) [ ] 1

1 1, : 0,x ENDc x t tΩ × → ¡  that satisfies:

•	 homogeneous equation
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•	 heterogeneous initial condition
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•	 homogeneous boundary conditions
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•	 as well as two conditions
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where the function ( )2 ,c x t  is defined in the domain 

[ ]2 0,x ENDtΩ ×  and is a nontrivial solution of the problem 

AP2 stated below.

Auxiliary problem AP2. It is required to find the 

function 0 ≡ ( ) [ ] 1
2 2, : 0,x ENDc x t tΩ × → ¡  that satisfies:

•	 homogeneous equation
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•	 heterogeneous initial condition
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•	 homogeneous boundary conditions
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B.	 Partial investigation of the first auxiliary 
boundary-value problem

First of all, we note that the use of the phrase “partial 
research” in the titles of the current and next subsections 
is related to the interconnectedness of the auxiliary 
problems AP1 and AP2: as it will be seen in subsections B 
and C of this section, a full research of AP1 is impossible 
without research of AP2, and vice versa.

So, first consider the AP1 problem, a non-trivial 
solution of which will be sought in the form

( ) ( ) ( ) ( ) ( )1 11 1 12 2 13 3 1, ,c x t X x X x X x T t=      (25)

where the essence of the requirements 

( )1 j jX x ≡ 0, 1,3j =  and ( )1T t ≡ 0  is obvious. 

Taking into account representation (25) in the equation 

(9), we get
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Since the left side of equality (26) depends only on the 
time variable ,t  and the right side depends only on spatial 
variables ( )1 2 3, , ,x x x x=  equality (26) is possible only 
if both sides of it are equal to the same constant, which 
we will denote by 1,µ−  without making any assumptions 
regarding the sign of the constant 1.µ  So, instead of (26) 
we can write the following two equations:
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First we deal with equation (28), and then we return 
to equation (27). Alternately differentiating equation 
(28) with respect to variables 1,x  2x  and 3 ,x  we 
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constants 11,µ  12 ,µ  13µ  are constituent constants of the 
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initial constant 1,µ  appearing in equations (27) and (28). 
So, we obtained the following homogeneous equations of 
the same type:

( ) ( )11 11 1 11 11 1 0,D X x X xµ′′ + =          (29)

( ) ( )12 12 2 12 12 2 0,D X x X xµ′′ + =          (30)

( ) ( )13 13 3 13 13 3 0,D X x X xµ′′ + =          (31)

which are related only by the fact that 
3

1 1
1

.j
j

µ µ
=

= ∑  As 

the constant’s 1µ  sign still is unknown to us, we also have 
no information about constants’ 11,µ  12 ,µ  13µ  signs.

Further, the substitution of (25) to the boundary 
conditions (11)(15) gives us the following boundary 
conditions:

•	 for the function ( )11 1X x  two boundary conditions:
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•	 for the function ( )12 2X x  again two boundary 
conditions:
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•	 for the function ( )13 3X x  one boundary condition:

( ) ( )13 13 13 130 0 0.D X Xλ′ − =          (34)

Consequently, the combination of equation (29) and 
boundary conditions (32), the combination of equation 
(30) and boundary conditions (33), and finally the 
combination of equation (31) and boundary condition (34) 
generate the following three SturmLiouville problems [9], 
[10], the first two of which are complete problems (in the 
sense that they have a complete formulation: each of them 
has a second-order ordinary differential equation and two 
boundary conditions are given), and the third problem 
is an incomplete problem (one boundary condition is 
missing):
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We will have to solve all three SturmLiouville 
problems in turn (35)(37): our goal is to find their non-

trivial solutions ( )1 j jX x ≡ 0, 1,3.j =

 It is not difficult to show that in the case, when 11 0,µ ≤  
the problem (35) has only a trivial solution. Therefore, in 
problem (35) only the case 11 0µ >  should be considered, 
and in this case the general solution of the problem (35) is 
the following function
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where 11A  is an arbitrary constant.

Function ( ) [ ]11 1 1 1, 0, ,X x x L∈ defined by formula (38), 
is called eigenfunction of the SturmLiouville problem (for 

instance, see [9] as well as [6]), and it corresponds to the 

eigenvalue 
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root of the transcendental equation
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Since the transcendental equation (39) has an infinite 
number of solutions, we can say that the SturmLiouville 
problem (35) has an infinite number of eigenvalues
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to which the following eigenfunctions correspond
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and each of them is determined with precision to 
an arbitrary constant 11 .nA  In (41) number 1nα  is n-th  
( )n∈¥  positive root of the transcendental equation 
(39), and, hereinafter, speaking of the ordinal numbers 
of the positive roots of the transcendental equation, 
we will mean their ordering in non-decreasing order: 

11 12 13α α α≤ ≤ ≤K
Because of the fact that the SturmLiouville problem 

(36) differs from the problem (35) only by the coefficients 

12D  and 12 ,λ  we can write, fully following the results of 
the study of the problem (35) obtained above, that the 
eigenfunctions of the SturmLiouville problem (36) are the 
functions

( ) [ ]12
12 2 12 2 2 2

12

cos , 0, ,m
m mX x A x x L

D
µ 

= ∈  
 

         (42)

where 12mA  are some constants; 

2

1
12 12

2

0m
m D

L
β

µ
 

= > 
 

 are eigenvalues, 1mβ  is m-th  
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( )m∈¥  positive root of the transcendental equation
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Now we investigate the incomplete SturmLiouville 
problem (37). It is easy to check that when 13 0µ >  (in 
the case of 13 0µ ≤  problem (37) has only trivial solution) 
incomplete problem (37) has general solution
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which is called the SturmLiouville incomplete problem 
eigenfunction (37) corresponding to the eigenvalue 

13µ  (not yet found); 13A  is an arbitrary constant. To 
find eigenvalue 1,3 ,µ  we should refer to conditions (16), 
(17), in which another function is involved – the desired 
function ( ) ( ) [ ]2 2, , , 0,x ENDc x t x t t∈Ω ×  of auxiliary 
problem AP2. In other words, to find the eigenvalues 
and the corresponding eigenfunctions of the incomplete 
SturmLiouville problem (37), we will need to investigate 
the auxiliary problem AP2, which we will do in subsection 
C of this section.

Recall that in the course of studying the AP1 problem 
(still unfinished), we found out that all the eigenvalues 
of problems (35)(37) of SturmLiouville are positive. 
Therefore, the constant 1µ  from (27) and (28), which is 
the sum of these eigenvalues, is also positive:
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where 1nα  and 1mβ  are n-th  ( )n∈¥  and m-th
( )m∈¥  positive roots of the transcendental equations 
(39) and (43), respectively; constituent constant 13 0,µ >  
which is the eigenvalue of the incomplete SturmLiouville 
problem (37), has not yet been found (it means that the 
eigenfunction ( ) [ ]13 3 3 1, 0, ,X x x H∈  having a formal 
representation in the form (44) and corresponding to this 
eigenvalue, is not uniquely determined).

C.	 Partial investigation of the second auxiliary 
boundary-value problem

We will look for nontrivial solution of the AP2 
problem in the following form

( ) ( ) ( ) ( ) ( )2 21 1 22 2 23 3 2, ,c x t X x X x X x T t= ⋅ ⋅ ⋅          (46)

where meaning of requirements ( )2 j jX x ≡ 0, 1,3j =  

and ( )2T t ≡ 0  is obvious. By analogy with the previous 
subsection B, given the representation (46) in equation 

(18), we obtain

( ) ( )2 2 2 0,T t T tµ′ + =          (47)

( )
( )

3
2

2 2
1 2

0,j j
j

j j j

X x
D

X x
µ

=

′′
⋅ + =∑          (48)

where 2µ  is the same constant 1µ  as in equations (27), 
(28), i.e. 2 1µ µ=  (for convenience, we will use the notation 

2 ,µ  knowing that 2 1µ µ= ).
First we deal with equation (48), and then we return 

to equation (47). We already know that constants 1µ  and 

2µ  in equations (28) and (48) coincide. However, we do 
not have the right to require that in three homogeneous 
equations of the same type

( ) ( )21 21 1 21 21 1 0,D X x X xµ′′ + =          (49)

( ) ( )22 22 2 22 22 2 0,D X x X xµ′′ + =          (50)

( ) ( )23 23 3 23 23 3 0,D X x X xµ′′ + =          (51)

which directly follow from equation (48) (see the 
transition procedure from equation (28) to equations (29)

(31)), constants 21,µ  22µ  and 23 ,µ  whose sum gives 2µ  
3

2 2
1

i.e. ,j
j

µ µ
=

 
= 

 
∑ coincide with the previous constituent 

constants 11,µ  12 ,µ  13µ  (values 11µ  and 12µ  are already 

determined, and value 13µ  will be determined in this 

subsection). The reason for this circumstance (i.e. the fact 

that 1 2 ,µ µ=  but 1 2 , 1,3j j jµ µ≡ = ) is due to the fact that 

the coefficients ( )1 1,3jD j =  in equations (29)(31) differ 
from the corresponding coefficients ( )2 1,3jD j =  in 
equations (49)(51). In other words, in the equations (49)

(51) constants 21,µ  22 ,µ  23 ,µ  where 
3

2 2
1

,j
j
µ µ

=

=∑  are still 

unknown constants and need to be determined. Finally, 
we note that equations of the same type (49)(51) are

related only by the fact that 
3

2 2
1

.j
j

µ µ
=

= ∑  Further, the 

substitution of representations (46) to the boundary 
conditions (20)(24) gives us the following boundary 
conditions:

•	 for function ( )21 1X x  two boundary conditions:
( )

( ) ( )
21

21 21 1 21 21 1

0 0,

0;

X

D X L X Lλ

′ =
 ′ + =

         (52)

•	 for function ( )22 2X x  again two boundary 
conditions:

( )
( ) ( )

22

22 22 2 22 22 2

0 0,

0;

X

D X L X Lλ

′ =
 ′ + =

         (53)
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•	 for function ( )23 3X x  one boundary condition:
( ) ( )23 23 3 23 23 3 0.D X L X Lλ′ + =          (54)

Consequently, the appropriate combination of 
equations (49)(51) and boundary conditions (52)(54) again 
give us the following three SturmLiouville problems, the 
first two of which are complete problems, and the third 
problem, just like problem (37) is not a complete problem:

( ) ( ) ( )
( )

( ) ( )

21 21 1 21 21 1 1 1

21

21 21 1 21 21 1

0, 0, ,

0 0,

0;

D X x X x x L

X

D X L X L

µ

λ

′′ + = ∈


′ =
 ′ + =

         (55)

( ) ( ) ( )
( )

( ) ( )

22 22 2 22 22 2 2 2

22

22 22 2 22 22 2

0, 0, ,

0 0,

0;

D X x X x x L

X

D X L X L

µ

λ

′′ + = ∈


′ =
 ′ + =

         (56)

( ) ( ) ( )
( ) ( )

23 23 3 23 23 3 3 1 3

23 23 3 23 23 3

0, , ,

0.

D X x X x x H L

D X L X L

µ

λ

′′ + = ∈
 ′ + =

         (57)

Almost completely following the reasoning from 
subsection B in the study of problems (35) and (36), 
with respect to complete problems (55) and (56) of 
SturmLiouville, we can assert the following statements 
without detailed derivation:

•	 The complete problem (55) of SturmLiouville has 
eigenvalues

2

2
21 21

1

0, ,k
k D k

L
α

µ
 

= > ∈ 
 

¥          (58)

to which the following eigenfunctions correspond

( ) [ ]21
21 1 21 1 1 1

21

cos , 0, ,k
k kX x A x x L

D
µ 

= ∈  
 

     (59)

and each of them is determined with precision to 
an arbitrary constant 21 .kA  In (59) number 2kα  is k-th  
( )k ∈¥  positive root of the transcendental equation

( ) 21 1
2 2

21

.
Ltg

D
λ

α α =          (60)

•	 The complete problem (56) of SturmLiouville has 
eigenvalues

2
2

22 22
2

0, ,p
p D p

L
β

µ
 

= > ∈ 
 

¥      (61)

to which the following eigenfunctions correspond

( ) [ ]22
22 2 22 2 2 2

22

cos , 0, ,p
p pX x A x x L

D
µ 

 = ∀ ∈
 
 

     (62)

and each of them is determined with precision to 
an arbitrary constant 22 .pA  In (62) number 2 pβ  is p-th  
( )p∈¥  positive root of the transcendental equation

( ) 22 2
2 2

22

.
Ltg

D
λ

β β =          (63)

Now let us study the incomplete SturmLiouville 
problem (57). It is easy to check that when 23 0µ >  (in the 

case of 23 0µ ≤  problem (57) has only trivial solution) the 
general solution of (57) is function

( )

[ ]

23
23 3 23 3

23

23 23
3 3 3 1 3

23 23

sin

cos , , ,

X x A x
D

x tg L x H L
D D

µ

µ µ
θ

  =      
   − + ∈         

         (64)

where 23A  is an arbitrary constant; 

23 23

23

.
D

arctg
µ

θ
λ

 
=   

 
Function ( )23 3 ,X x  defined by formula (64), is called 

the eigenfunction of the incomplete SturmLiouville 
problem (57) corresponding to the eigenvalue 23.µ  
Recall that in the course of studying the AP2 problem 
(still unfinished), we found out that all the eigenvalues 
of problems (55)(57) of SturmLiouville are positive. 
Therefore, the constant 2µ  from (47) and (48), which is 
the sum of these eigenvalues, is also positive:

{
2

2 21 22 23

22
22

21 22 23
1 2

0

, , ,

kp k p

pkD D k p
L L

µ

µ µ µ µ

βα
µ

< = + +

  
= + + ∀ ∈  

   
¥

         (65)

where 2kα  and 2 pβ  are k-th  ( )k ∈¥  and p-th ( )p∈¥  
positive roots of the transcendental equations (60) and 
(63), respectively; constituent constant 23 0,µ >  which 
is eigenvalue of incomplete SturmLiouville problem 
(57), is still unknown (it means that the eigenfunction 

( ) [ ]23 3 3 1 3, , ,X x x H L∈  having a formal representation 
in the form (64) and corresponding to this eigenvalue, is 
not uniquely determined).

So, within the framework of the study of auxiliary 
problems AP1 and AP2, by this time the eigenvalues 

13µ  and 23 ,µ  remain uncertain and, therefore, same thing 
can be said about their corresponding eigenfunctions 

( ) [ ]13 3 3 1, 0,X x x H∈  and ( ) [ ]23 3 3 1 3, , ;X x x H L∈  in 

addition, it is necessary to clarify the choice of constants 

( )11 ,nA n∈¥  ( )12 ,mA m∈¥  13 ,A  ( )21 ,kA k ∈¥  

( )22 ,pA p∈¥  23;A  finally, it is required to find functions 

( )1T t  and ( )2 ,T t  which satisfy equations (27) and (47).

D.	 Using the matching conditions, and the complete 
solving the both auxiliary problems

Recall that in the course of studying the auxiliary 
problems AP1 and AP2, we did not use matching 
conditions (16) and (17), and now it is time to use these 
conditions to find eigenvalues 13µ  and 23 ,µ  and redefine 
the corresponding eigenfunctions ( ) [ ]13 3 3 1, 0,X x x H∈  
and ( ) [ ]23 3 3 1 3, , ,X x x H L∈  formally represented by 
formulas (44) and (64)), respectively. For this purpose, 
we first note that if equality
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holds for 0, , 1, 2,j jx L j ∀ ∈ =   [ ]0, ENDt T∀ ∈  and 

( )3 1 1, , 0 1,x H Hε ε ε∀ ∈ − + < =  then it means that 

( ) ( )13 3 23 3 , 0 1,X x CX x ε= < ∀ =  where 0C ≠  is an 

arbitrary constant, which for convenience we choose 

as 13

23

,
A
A

 i.e. 13

23

A
C

A
=  (such a choice of a constant is 

legitimate because of its arbitrariness, and, moreover, 
nothing will change from such (or other) choice). Now, 
having this fact, substituting representations (25) and (46) 
to matching conditions (16) and (17), we obtain

( ) ( )
3 13 1

23 13 3 13 23 3 ,x Hx H
A X x A X x +− ==

=

( ) ( )
3 1 3 1

23 13 13 3 13 23 13 3 .
x H x H

A D X x A D X x− += =
′ ′=

Taking into account formulas (44) and (64) in these 
two equalities, after performing the necessary calculations 
and transformations, gives us the following results: the 
desired eigenvalue 23µ  from the SturmLiouville problem 
(57) are found by the formula

2

23 23
2

0,D
H
γµ

 
= > 

 
         (66)

and then the desired eigenvalue 13µ  from the 
SturmLiouville problem (37) is calculated by the formula

13 21 22 23 11 12 ,µ µ µ µ µ µ= + + − −          (67)

whose right side contains already found eigenvalues 
of SturmLiouville problems (35), (36), (55), (56).

In the formula (66) parameter γ  is positive root of the 
transcendental equation

( )
2

23 23

2 23

,
D D

tg arctg g
H

γ ξ γ
γ γ

γ λ
 +  

+ =     
         (68)

( )
( )

( )

2
2 231

13 23 2 13
2 1323

2
13 2 231

13 23 2 13
2 13

,

DHD D H tg
H DD

g
D DHD D tg H

H D

γ ξ
γ ξ λ

γ
γ ξ

γ ξ λ

 +
 + +
 
 =

 +
 + −
 
 

( )2
2 21 22 11 12 .Hξ µ µ µ µ= + − −

Since the transcendental equation (68) has an infinite 
number of solutions, we arrive at the following results:

•	 The SturmLiouville problem (57) has an infinite 
number of eigenvalues

( )

2

23 23
2

, ,

, , , , , , , ,

q
q D q

H

q q n m k p n m k p

γ
µ

 
= ∈ 

 
= ∀ ∈

¥

¥

         (69)

to which the following eigenfunctions correspond

( )

[ ]

23
23 3 3

23

23 2323
3

23 23

23
3 3 1 3

23

sin

cos , , ;

q
q

qq

q

X x x
D

D
tg L arctg

D

x x H L
D

µ

µµ
λ

µ

 
 =
 
 

  
  − + ×

    
 
 × ∈
 
 

         (70)

in (69) number ( ), , ,q q n m k pγ γ=  is q-th ( )q∈¥  
positive root of the transcendental equation (68);

•	 The SturmLiouville problem (37) has an infinite 
number of eigenvalues

( )
13 21 22 23 11 12 ,

, , , , , , , ,
nmkpq k p q n m

q q n m k p n m k p

µ µ µ µ µ µ= + + − −

= ∀ ∈¥

to which the following eigenfunctions correspond

( )

[ ]

13 13 13
13 3 3

13 13

13
3 3 1

13

cos

sin , 0, .

nmkpq nmkpq
nmkpq

nmkpq

D
X x x

D

x x H
D

µ µ
λ

µ

 
 =
 
 

 
 + ∈
 
 

         (71)

So, within the framework of the study of auxiliary 
problems AP1 and AP2, two sub-problems remain 
unfinished: the problem of finding functions ( )1T t  and 

( )2 ,T t  for whose solution one, first of all, needs to 
clarify/redefine formulas (45) and (65) for constants 1µ  
and 2 ;µ  problem of choosing constants ( )11 ,nA n∈¥  

( )12 ,mA m∈¥  ( )21kA k ∈¥  and ( )22 ,pA p∈¥  which 
appear in formulas (41), (42), (59) and (62), respectively. 
We start by clarifying/redefining formulas (45) and (65) 
for constants 1µ  and 2.µ  Since constants 1µ  and 2µ  
coincide, then it is sufficed to clarify the formula (45) for 
the constant 1µ  only:

         (72) 

Now we clarify the problem of choosing con-
stants ( )11 ,nA n∈¥  ( )12 ,mA m∈¥  ( )21kA k ∈¥  and 

( )22 ,pA p∈¥  which appear in formulas (41), (42), (59) 
and (62), respectively. For this we use the fact that the 
system of eigenfunctions of the SturmLiouville prob-
lem forms an orthogonal system with some weight on 
the segment. Therefore, we can state that the system of 

functions ( ){ }11 1 ,n n
X x

∈¥
 ( ){ }12 2 ,m m

X x
∈¥

 ( ){ }21 1 ,k k
X x

∈¥
 

( ){ }22 2 ,p p
X x

∈¥
 represented by formulas (41), (42), (59), 

(62), respectively, are orthogonal systems on segments 
[ ]10, ,L  [ ]20, ,L  [ ]10, ,L  [ ]20, ,L  respectively. One of the 
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reasonable constraints on choice of constants ( )11 ,nA n∈¥  

( )12 ,mA m∈¥  ( )21 ,kA k ∈¥  ( )22 ,pA p∈¥  which appear 

in formulas (41), (42), (59), (62), respectively, is the re-

quirement of orthonormality of systems ( ){ }11 1 ,n n
X x

∈¥
 

( ){ }12 2 ,m m
X x

∈¥
 ( ){ }21 1 ,k k

X x
∈¥

 ( ){ }22 2p p
X x

∈¥
 of eigen-

functions. Another option (very simple, but less reason-
able) of choosing constants is simply equating them to 
some number, for example, to 1. In this paper, we choose 
the first option:

( )

[ ]

11 1111
11 1 1

11 11 11

1 1

sin ,

0, , .

n n
nX x x

D D

x L n

µ µλ
λ

 
= +   

 
∀ ∈ ∀ ∈¥

   (73)

( )

[ ]

12 1212
12 2 2

12 12 12

2 2

sin ,

0, , .

m m
mX x x

D D

x L m

µ µλ
λ

 
= +   

 
∀ ∈ ∀ ∈¥

   (74)

( )

[ ]

21 2121
21 1 1

21 21 21

1 1

sin ,

0, , .

k k
kX x x

D D

x L k

µ µλ
λ

 
= +   

 
∀ ∈ ∀ ∈¥

   (75)

( )

[ ]

22 2222
22 1 2

22 22 22

2 2

sin ,

0, , .

p p
pX x x

D D

x L p

µ µλ
λ

 
 = +
 
 

∀ ∈ ∀ ∈¥

   (76)

Now we can proceed to solving the last problem in 
the framework of the study of auxiliary problems AP1 
and AP2 – the problem of finding functions ( )1T t  and 

( )2T t  from equations (27) and (47), respectively. If we 
consider equations (27) and (47) only from the position of 
time [ ]0, ,ENDt t∈  rather than from the position of spatial 
variables, the solution of these equations is the function 
( ) ,tT t Be µ− ⋅=  where B  is some coefficient that is not yet 

defined. Since number ( )1 2µ µ µ= =  is determined by 
finally found formula (72), we can write

( ) , , , , , ,nmkpq t
nmkpq nmkpqT t B e n m k p qµ− ⋅= ∀ ∈¥          (77)

where coefficients nmkpqB are to be determined taking 
into account spatial variables.

To satisfy conditions (10) and (19), in the formula 
(77) for the layer 1xΩ  there should be its own distinctive 

coefficients 1 ,nmkpqB  and for the layer 2xΩ  there should be 

its own distinctive constants 2 .nmkpqB  Taking into account 

formula (73) for ( )11 1 ,nX x  formula (74) for ( )12 2 ,mX x  

formula (71) for ( )13 3 ,nmkpqX x  formula (75) for ( )21 1 ,kX x  

formula (76) for ( )22 2 ,pX x  formula (70) for ( )23 3 ,nmkpqX x  

formula (77) for ( )nmkpqT t  in representations (25) and (46), 

we obtain the following formula for the desired functions 

( )1 , ,c x t  where ( ) [ ]1, 0, ,x ENDx t t∈Ω ×  and ( )2 , ,c x t  where 

( ) [ ]2, 0, :x ENDx t t∈Ω ×

( ) ( )1 1 1
, , , , 1

, ,nmkpq t
nmkpq nmkpq

n m k p q
c x t B e X xµ

+∞
− ⋅

=

= ∑          (78)

where ( ) ( ) ( ) ( )1 11 1 12 2 13 3 ,nmkpq n m nmkpqX x X x X x X x=  

[ ]1 10, ,x L∈  [ ]2 20, ,x L∈  [ ]3 10, ,x H∈  [ ]0, ,ENDt t∈  system 

of functions ( ){ }1 , , , ,nmkpq n m k p q
X x

∈¥
 is an orthogonal system;

( ) ( )2 2 2
, , , , 1

, ,nmkpq t
nmkpq nmkpq

n m k p q
c x t B e X xµ

+∞
− ⋅

=

= ∑          (79)

where ( ) ( ) ( ) ( )2 21 1 22 2 23 3 ,nmkpq k p nmkpqX x X x X x X x=  

[ ]1 10, ,x L∈  [ ]2 20, ,x L∈  [ ]3 1 3, ,x H L∈  [ ]0, ,ENDt t∈  

system of functions ( ){ }2 , , , ,nmkpq n m k p q
X x

∈¥
 is an orthogonal 

system.
Obviously, the function ( )1 , ,c x t  determined by 

the formula (78), satisfies all homogeneous boundary 
conditions (11)(15) of the auxiliary problem AP1, since 
they are satisfied by all members of the quadruple series 
in the right-hand side (78); similarly function ( )2 , ,c x t  
determined by the formula (79), satisfies all homogeneous 
boundary conditions (20)(24) of the auxiliary problem 
AP1, since they are satisfied by all members of the 
quadruple series in the right-hand side (79); in addition, 
these functions satisfy the matching conditions (16), (17), 
since functions ( )13 3nmkpqX x  and ( )23 3 ,nmkpqX x  which 
are contained in each member of the quadruple series 
of (78) and (79), respectively, automatically satisfy the 
matching conditions (16), (17) – functions ( )13 3nmkpqX x  
and ( )23 3nmkpqX x  were determined owing to the conditions 
(16), (17). Therefore, it remains to enforce functions 
( )1 ,c x t  and ( )2 ,c x t  to satisfy the initial conditions (10) 

and (19), respectively.
The sought-for function ( )1 , ,c x t  which is determined 

by formula (78), to satisfy initial condition (10), we obtain:

( ) ( )10 1 1
, , , , 1

.nmkpq nmkpq
n m k p q

c x B X x
+∞

=

= ∑          (80)

Analogously, the sought-for function ( )2 ,c x t  deter-
mined by formula (79) to satisfy the initial condition (19), 
we obtain:

( ) ( )20 2 2
, , , , 1

.nmkpq nmkpq
n m k p q

c x B X x
+∞

=

= ∑      (81)

Let us by turns apply to (80) and (81) one of the 
fundamental theorems of mathematical physics – Steklov’s 
Theorem on decomposability of any twice continuously 
differentiable function into absolutely and uniformly 
convergent series by orthogonal system of eigenfunctions 
of the SturmLiouville problem (first strictly proved in 
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[11]; see also [10]): for , , , ,n m k p q∀ ∈¥  there take place

( ) ( )

( )

( ) ( )

( )

1

1

1 2 1

1 2 1

10 1

1 2
1

1 2 10 1 3
0 0 0

2
1 2 1 3

0 0 0

,

x

z

nmkpq

nmkpq
nmkpq

L L H

nmkpq

L L H

nmkpq

c y X y dy
B

X z dz

dy dy c y X y dy

dz dz X z dz

Ω

Ω

=

=

∫

∫

∫ ∫ ∫

∫ ∫ ∫

         (82)

( ) ( )

( )

( ) ( )

( )

2

2

31 2

1

31 2

1

20 2

2 2
2

1 2 20 2 3
0 0

2
1 2 2 3

0 0

.

y

z

nmkpq

nmkpq
nmkpq

LL L

nmkpq
H

LL L

nmkpq
H

c y X y dy

B
X z dz

dy dy c y X y dy

dz dz X z dz

Ω

Ω

=

=

∫

∫

∫ ∫ ∫

∫ ∫ ∫

         (83)

It is not difficult to prove [6] that the function 
( )1 ,c x t  defined by formulas (78), (82) is a continuously 

differentiable function by a variable t  in the interval 
[ ]0, ENDt and twice continuously differentiable function by 
variable x for the layer 1 ,xΩ  which satisfies the equation 
(9). Similarly, a function ( )2 , ,c x t  defined by formulas (79), 
(83) is a continuously differentiable function for a variable 
in a segment and a twice continuously differentiable 
function (twice differentiable function) for a variable t  
for the layer 2 ,xΩ  which satisfies equation (18). Thus, the 

functions ( )1 ,c x t  and ( )2 ,c x t  are continuous functions 

for [ ]1 0,x ENDtΩ ×  and [ ]2 0, ,x ENDtΩ ×  respectively, and 
since these functions satisfy the matching conditions 
(16), (17), they are considered to be solutions of auxiliary 
problems AP1 and AP2, respectively. Thus, the study of 
auxiliary problems AP1 and AP2 is entirely completed, 
and now we can proceed to finding a solution for the 
original problem (1)-(8).

E.	 Solving the original problem (1)(8)
Obviously, substituting (82) in (78) and (83) 

in (79), we get the following representations for 

the functions ( ) ( ) [ ]1 1, , , 0,x ENDc x t x t t∀ ∈Ω ×  and 

( ) ( ) [ ]2 2, , , 0, :x ENDc x t x t t∀ ∈Ω ×

( ) ( ) ( )
1

1 1 10, , , ,
y

c x t G x y t c y dy
Ω

= ∫          (84)

( ) ( ) ( )
( )

1

1 1
1 2

, , , , 1 1

, , ,nmkpq

z

t nmkpq nmkpq

n m k p q nmkpq

X x X y
G x y t e

X z dz
µ

+∞
−

=

Ω

= ∑
∫

 (85)

( ) ( ) ( )
2

2 2 20, , , ,
y

c x t G x y t c y dy
Ω

= ∫          (86)

( ) ( ) ( )
( )

2

2 2
2 2

, , , , 1 2

, , ,nmkpq

z

t nmkpq nmkpq

n m k p q nmkpq

X x X y
G x y t e

X z dz
µ

+∞
− ⋅

=

Ω

= ∑
∫

 (87)

which are a more compact form for auxiliary problems 
AP1 and AP2 solutions, respectively. Each of the above 
introduced functions ( ), , , 1, 2jG x y t j =  is a well-known 
and deeply studied Green’s function [6], [10], [13], [14]. 
Our goal in this subsection is the analytical construction 
of the solution to the original problem (1)(8), using the 
Green’s functions ( ), , , 1, 2.jG x y t j =  As you will be able 
to see below, after completing the study of auxiliary prob-
lems AP1, AP2, there is no difficulty in finding an analyti-
cal solution to the original problem (1)-(8): a more or less 
difficult part of the research for the problem considered in 
this paper is the study of auxiliary problems AP1 and AP2.

Let us formulate a new auxiliary problem, naming it 
NAP1: it is required to find solutions to the inhomogeneous 
equation (which coincides with equation (1) for 1i = )

( ) ( ) ( )

( ) ( ]

23
1 1

1 12
1

1

, ,
, ,

, int 0, ,

j
j j

x END

c x t c x t
D f x t

t x

x t t
=

∂ ∂
= +

∂ ∂

∈ Ω ×

∑

which satisfies the zero-initial condition

( )1 10
, 0, xt

c x t x+=
= ∈Ω

and zero-boundary conditions (11)-(15) of the 
auxiliary problem AP1.

The desired solution of the NAP1 is the function

( ) ( ) ( )
1

1 1 1
0

, , , , ,
y

t

c x t d G x y t f y dyτ τ τ
Ω

= −∫ ∫      (88)

where the function ( )1 , ,G x y t τ− is the same Green 
function (85), in which instead of the argument t  there is 
an argument .t τ−  

Now let us formulate a new auxiliary problem NAP2: 
it is required to find solutions to the inhomogeneous 
equation (which coincides with equation (1) at 2i = )

( ) ( ) ( )

( ) ( ]

23
2 2

2 22
1

2

, ,
, ,

, int 0, ,

j
j j

x END

c x t c x t
D f x t

t x

x t t
=

∂ ∂
= +

∂ ∂

∈ Ω ×

∑

which satisfies the zero-initial condition

( )2 20
, 0, xt

c x t x+=
= ∈Ω

and to zero-boundary conditions (20)-(24) of the aux-
iliary problem AP2.

The desired solution of the NAP2 is the function

( ) ( ) ( )
2

2 2 2
0

, , , , ,
y

t

c x t d G x y t f y dyτ τ τ
Ω

= −∫ ∫      (89)

where the function ( )2 , ,G x y t τ−  is the same Green’s 
function (87), in which instead of the argument t  there is 
an argument .t τ−

Thus, the following functions that contain the 
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corresponding right-hand sides of (84), (88) and (86), 
(89), give us a solution to problem (1)-(8) provided 

that ( )1 2 3, , 0,jc x x t ≡  ( )1 2 3, , 0,ja x x t ≡  ( )2 1 3, , 0,jc x x t ≡  
( )2 1 3, , 0,ja x x t ≡  ( )3 1 2, , 0ja x x t ≡  for 1, 2 :j∀ =

( ) ( ) ( )

( ) ( )

0

0

, , ,

, , , , 1, 2

jy

jy

j j j

t

j j

c x t G x y t c y dy

d G x y t f y dy jτ τ τ

Ω

Ω

=

+ − =

∫

∫ ∫
     (90)

Therefore, to complete our study, it remains to find a 
solution to problem (1)-(8), provided that ( ), , 0jf x y t ≡  
and ( )0 0jc x ≡  for 1, 2,j∀ =  and then, add the solution 
found to the right side of the formula (90). To achieve 
this, it is necessary to use the multiplicative property of 
the Green functions as well as the properties of the Dirac 
delta function [14], [15]:

•	 function ( )1 , ,c x t  which is defined as 

( ) ( ) ( )2 1

1

11 2 3
1 2 1 30

110 0 0

, ,
, , ,

L Ht

y

c y y
c x t d dy G x y t dy

D
τ

τ τ
=

−
= −∫ ∫ ∫

( ) ( )
2 1

1 1
2 1 11 2 3 3

0 0 0

, , , ,
L Ht

y L
d dy G x y t a y y dyτ τ τ

=
+ −∫ ∫ ∫

( ) ( )1 1

2

11 1 3
1 1 30

120 0 0

, ,
, ,

L Ht

y

a y y
d dy G x y t dy

D
τ

τ τ
=

−
+ −∫ ∫ ∫   (91)

( ) ( )
1 1

2 2
1 1 12 1 3 3

0 0 0

, , , ,
L Ht

y L
d dy G x y t a y y dyτ τ τ

=
+ −∫ ∫ ∫

( ) ( )1 2

3

13 1 2
1 1 20

130 0 0

, ,
, , ,

L Lt

y

a y y
d dy G x y t dy

D
τ

τ τ
=

−
+ −∫ ∫ ∫

is a solution to problem (1)-(8) at 1i =  under 
conditions ( )1 , 0,f x t ≡ ( )10 0c x ≡  (i.e. with homogeneous 
equation (1), zero initial condition (2), and non-zero 
boundary conditions (3)-(7));

•	 function ( )2 , ,c x t  which is defined as 

( ) ( ) ( )32

1
1

21 2 3
2 2 2 30

210 0

, ,
, , ,

LLt

y
H

c y y
c x t d dy G x y t dy

D
τ

τ τ
=

−
= −∫ ∫ ∫

( ) ( )
32

1 1
1

2 2 21 2 3 3
0 0

, , , ,
LLt

y L
H

d dy G x y t a y y dyτ τ τ
=

+ −∫ ∫ ∫

( ) ( )31

2
1

11 1 3
1 2 30

220 0

, ,
, ,

LLt

y
H

a y y
d dy G x y t dy

D
τ

τ τ
=

−
+ −∫ ∫ ∫   (92)

( ) ( )
31

2 2
1

1 2 22 1 3 3
0 0

, , , ,
LLt

y L
H

d dy G x y t a y y dyτ τ τ
=

+ −∫ ∫ ∫

( ) ( )1 2

3 3

23 1 2
1 2 2

230 0 0

, ,
, , ,

L Lt

y L

a y y
d dy G x y t dy

D
τ

τ τ
=

−
+ −∫ ∫ ∫

is a solution to problem (1)-(8) at 2i =  under conditions 
( )2 , 0,f x t ≡  ( )20 0c x ≡  (i.e. with homogeneous equation 

(1), zero initial condition (2), and non-zero boundary 
conditions (3)-(7)).

Thus, the function ( )1 , ,c x t  which is obtained by 

summing the right parts of formulas (90) (at 1j = ) and 
(91), describes the desired dynamics of the concentration 
of metal substances in the first layer of a two-layer 
peat block, the function ( )2 , ,c x t  which is obtained by 
summing the right parts of formulas (90) (at 2j = ) and 
(92) describes the desired dynamics of the concentration 
of metal substances in the second layer of a two-layer peat 
block. The construction of the analytical solution of the 
problem (1)-(8) is entirely completed.

IV.	 Conclusion

In this paper, it is studied the problem of determining 
the dynamics of the concentration of metal substances in 
a two-layer anisotropic peat block. The work examines 
in detail the well-known variables separation method for 
constructing an analytical solution for a mathematical 
model of the studied problem. It is shown that the main 
difficulty is only the solution of interrelated auxiliary 
problems AP1 and AP2, which are obtained from the 
original mathematical model under the conditions that 
there are no sources in both layers, and that all boundary 
conditions are homogeneous
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