
61

Modern Algorithms to Identify Plagiarism
Aleksejs Grocevs

Software engineering departmentRiga
Technical University

Riga, Latvia
Aleksejs.Grocevs@rtu.lv

. Natālija Prokofjeva
Software engineering department

Riga Technical University
Riga, Latvia

Natalija.Prokofjeva@rtu.lv

Abstract—Nowadays information technology industry
is growing extremely fast. To solve business needs, address
researcher demand for problem solving a lot of programs
are built from scratch. However, not all developers are
fair enough to align their products with the corresponding
library or another (open source) product licenses, i.e.
copyrights are being violated, intentionally or due to
familiarization with another source code. To address
this issue in past decade multiple plagiarism detection
techniques and algorithms were invented. Despite the fact,
that many of them are capable of code comparison on
meta-level, modern Integrated Development Environments
(IDEs) provide convenient way to modify program source
code without actual re-writing, preserving the original code
workflow and avoiding plagiarism detection. This paper will
compare and identify available approaches to apprehend
this issue, as well as provide insights for the future this
problem mitigation.

Keywords— plagiarism, algorithm, abstract syntax tree,
graph.

I.	 Introduction

This document oversees the existing plagiarism
detection algorithms, the main idea of the article is in
comparison of most popular algorithms with insights
towards their types and structures they do operate with.
During the document the text, structure based and
semantic algorithms have been covered.

With the purpose of diving in details of plagiarism
detection algorithms the analysis of common structures
like AST (abstract syntax tree) and Graph structures have
been performed, hence mentioned structures are quite
common solutions of building algorithms of mentioned
types are being used those days.

The following specific algorithms have been
reviewed in the document: The Greedy String Tilling,
Kolmogorov complexity algorithm and Fingerprint
method. Additionally, the abovementioned approaches
were comparative analyzed.

II.	 ALGORITHM TYPES

Initially the plagiarism detection algorithms were
based on quantitative comparison of different program’s
characteristics like: average string length within the

program, number of variables are being defined and are
being used, average variable naming length, number of “if
else” operators. So the two similar programs would have
close or equal number of mentioned constructions. Such
algorithms were based on correlation counting principle
and were well renown as “attribute counting systems”.

The main disfunction of such algorithms happened
because the only overall number of certain constructions
haven’t been analyzed, instead of in-depth analysis of
program’s logic to be performed. So the similar inclusion
of code being plagiarized within the original program
couldn’t be discovered.[3]

Algorithms shown above provides just the overall,
quite approximate result of correlation within the
program’s syntax. The better result could have been
provided by the so cold ”control-flow graph” algorithms
which are being oriented to compare the changes within
the programs structure.

 The above stated analysis led the authors towards the
comparison of the most modern algorithms from the text
based, structure based and semantic algorithms types.

In the first part of this article the major plagiarism
detection algorithms will be reviewed with the detailed
comparative analysis afterwards. Nowadays there are
three main types of plagiarism detection algorithms: those
are based on the text, structure or semantics analysis.

Text algorithms are based on the text based program code
perception, as an alphabet where one symbol is equal
to the proper operator from the programming language,
named token. All the text algorithms are based on the
idea of such token or token groups comparison within the
programming code.

Granularity of the token groups within the code to be
inter-compared proportionally equals the effectiveness of
the algorithm.

Historically text algorithms were the first widely
used ones, their effectiveness is based on investment
should be made in recurrent comparison constructions
of the interchangeable symbol blocks to assure the most
frequent combinations are being checked.[2]

Environment. Technology. Resources. Rezekne, Latvia
Proceedings of the 12th International Scientific and Practical Conference. Volume II, 61-64

Print ISSN 1691-5402
Online ISSN 2256-070X

http://dx.doi.org/10.17770/etr2019vol2.4058
© 2019 Aleksejs Grocevs, Natālija Prokofjeva.

 Published by Rezekne Academy of Technologies.
This is an open access articleunder the Creative Commons Attribution 4.0 International License.

62

Structure based algorithms are based on the analysis
of the program’s structure, where the program logic
interpreted in the AST (abstract syntax tree) are being
compared. AST (abstract syntax tree) or the Graph of the
program’s flow are the two names of the program logic tree
implementation [1]. Both in AST (abstract syntax tree)
or in the Graph the algorithm operates with the program
logic as a tree, where such constructions as “if. else.” are
being perceived as the branches of the tree. Therefore,
each program is being perceived as a tree structure what
results in quite convenient recurrent comparison between
different branches. Important to note that the algorithms
using AST (abstract syntax tree) structure are being quite
complex in realization and quite advanced supporting
technical infrastructure is being required [1].

Semantic algorithms are the algorithms using the
Graph relations with two different types of elements,
where one element represents the operator type and the
connected element represents the type of relation, they
are being in. Based on that Graph there is possibility to
check each tree limb independently resulting with the
quite effective way of comparison between the different
code structures.

Each of the main plagiarism detection algorithm types
are quite similar and gives the opportunity to analyze the
program or it’s parts. Such algorithms work well against
typical ways of plagiarism, where students do try to
change the places of operators within the code.

III.	 Common structures are being used within the
algorithms

Alongside with review of certain algorithms author
would like to review common structures they are being
based on: AST (abstract syntax tree) and Graph structure.

Fig. 1. AST (abstract syntax tree) structure [1]

Figure above (Fig 1.) shows AST (abstract syntax
tree) represented in the form of interdependent blocks of
code. On the Fig. 1. there could be seen quite different
constructions even in such short code example. Comparing
part of such tree with the another one there is possibility
to successfully fight such simple plagiarism ideas as
replacement of the code parts within one program, quite
common case in the coursework plagiarism in the high
schools.

Fig. 2. Graph structure [1]

The Graph structure provides the different idea to
the Structure based and Semantic plagiarism detection
algorithms types.

Within the Graph structure program code is been
transferred to the graph where vertex and edges are being
defined by the operators and their relations.[9]

Mentioned structures are being widely used within
the various specific plagiarism detection algorithms.

Use of this structure is useful in searching the core
functions, blocks in code within the different programs,
may result in finding plagiarism even on idea level within
students solving one complex problem.

IV.	
Specific Algorithm Realizations

“The Greedy String Tiling” is the subset of the “Text”
plagiarism detection algorithm type. This algorithm
interprets to programs to be compared as two lines of text
based on the unified alphabet (usually named the token
variety) and results with the one line of text - the variety
of the unique tokens.

The main two ideas of the comparison are: algorithm
does not count in coincidences with the too small number
of same tokens. The major findings to count in examining
the result are the longer coincidences even if summarized
length of the small coincidences is bigger. Such logic
could be easily explained, so there could be same parts of
code constructions to be used by two different developers,
but they are many in numbers and short, on the other hand
the long lines of same tokens is the clear sign of possible
plagiarism within the programmed solution. [3]

Therefore, not counting in the smaller coincidences
just protects the algorithm from the possibility of random
matches.

“Kolmogorov complexity algorithm” : “K (s) =
min{|p|, U(p) = s}”, the algorithmic complexity K (s) of a
string is the length of the shortest program p that produces
s running on a universal Turing machine U. Algorithm
counts the length of non-matched tokens between the
matching sequences. [5]

This method is being called (an information-based
sequence distance). The main advantage of this method

Grocevs et al. Modern Algorithms to Identify Plagiarism

63

is its versatility, since it will understand the appearance
of matching element based on every possible match
principle, what makes it much more universal than other
plagiarism detection algorithms. So, as the “Kolmogorov
complexity algorithm” states, the smaller is the average
length of non-matched tokens the higher is the probability
of plagiarism within two programs.

“Fingerprint method” - specific realization of “Text”
type plagiarism detection algorithm. In “Fingerprint”
method there are stored vocabulary of “token
combinations” are being named “Fingerprints”.

So, in this method the search and comparison are not
being handled on token to token principle, but on the other
hand by searching specific token, or token combination in
codes are being compared.[8]

The “Fingerprint” is much more convenient for
various interdependent searches, where search is being
handled against the “Fingerprint” base, could be stored in
format of simple DB solution. [4]

Usually the “Fingerprint” plagiarism detection
algorithm is being realized in following steps:

1.) use of hashing principle for the sequence of
tokens (program);

2.) received subset of hash-codes to be put within the
hash table;
3.) Comparison of hash tables with the “Fingerprint
base” the subsets with the higher risk for plagiarism will
be defined.

TABLE I. 	Plagiarism detection algorithm comparison

Algorithm
name Pros Cons

1. Greedy String
Tiling

Effective in com-
paring one-to-one
program codes

Is not effective
enough to use this
type of text algo-
rithms with DB of
code samples

2.
Kolmogorov
c o m p l e x i t y
algorithm

Versatility, since
it will understand
the appearance of
matching element
based on every pos-
sible match princi-
ple, what makes it
much more univer-
sal than other pla-
giarism detection
algorithms

Is not effective
enough to use this
type of text algo-
rithms with DB of
code sample

3. F inge rp r in t
method

“Fingerprint” is
much more conve-
nient for various
i n t e r d e p e n d e n t
searches, where
search is being
handled against the
“Fingerprint base”,
could be stored in
format of simple
DB solution.

Infrastructure with
quite high-perfor-
mance character-
istics is being re-
quired to support
this solution

Comparison of the “Greedy String Tiling”,
“Kolmogorov complexity algorithm” and “Fingerprint
method” algorithms has shown the different specifics
of the, above mentioned algorithms, there are different
situations and circumstances they could be applicable and

the most effective in.

Each of the reviewed plagiarism detection algorithms
could be used in the high school environment, but the
“Fingerprint method” algorithm looks to be the most
useful one while checking the student’s developed
program against the DB of the program samples from
the previous courses. On the other hand, “Kolmogorov”
algorithm should be chosen for the more complicated,
choice situations.

V.	 Other Conclusions

Concluding the article following findings should be
highlighted:

Major plagiarism detection algorithm including their
specific realizations can handle the plagiarism problem
effectively, on the other hand there are proper pros and
cons against choosing the one or another of them.

For example, no other algorithm except the “Finger-
print” algorithm can work effectively with the big num-
ber of code examples to perform the comparison with. If
this type of solution is being required the “Fingerprint”
algorithm is the most effective one, since it’s speed of
work is directly dependent from the number of code ex-
amples to compare with.

There are big difference in terms of quality and quan-
tity within the performed analysis, since the “text” type
plagiarism detection algorithm are not so precise in terms
of detecting the certain logical constructions in compar-
ison with “structure-based algorithms” or “semantic al-
gorithms”.

On the other hand, “structure-based algorithms”
which use AST (abstract syntax tree) or “semantic algo-
rithms” using the Graph structure do provide the much
clearer picture of logical structures are being used within
the compared programs code.

Within the big number of existing plagiarism de-
tection algorithms there are the most effective ones like:
“Fingerprint” algorithm and algorithms based on the AST
(abstract syntax tree), since they are the only ones which
can effective and automate the plagiarism check using the
DB of comparative examples in the process.

Mentioned algorithms go assure the expected speed
based on hash-tables usage in comparison process. This
is the main reason of these algorithms’ usage in the high
schools, where are lots of student’s generated code ex-
amples on a quite limited number of topics within the
disciplines.

Here is very important to understand that during each
year students of different courses do repeatedly work on
quite similar problems within their courses, since there is
no real possibility to significantly differ the course con-
tent as frequent as new groups of students do arrive, on
the yearly basis at least.

This is the main reason for using “Fingerprint” and
AST (abstract syntax tree) based algorithms against the
Database of the student works submitted from the previ-
ous years.

Environment. Technology. Resources. Rezekne, Latvia
Proceedings of the 12th International Scientific and Practical Conference. Volume II, 61-64

64

References
[1]	 Baxter I., Clone Detection Using Abstract Syntax Trees. ICSM.

2008.
[2]	 Mishne G., Source Code Retrieval using Conceptual Similarity,

RIAO, Vaucluse, 2004.
[3]	 Chen X., Francia B., Shared Information and Program Plagiarism

Detection, IEEE Information Theory. 2004.
[4]	 A.Grocevs, N.Prokofjeva, “Modern programming assignment

verification, testing and plagiarism detection approaches.” Pro-
ceedings of the IVUS International Conference on Information
Technology, pp. 61-64, 2017.

[5]	 Prechelt L, Malpohl G, Philipsen M. Finding plagiarism among a
set of programs w/th JPlag. J. UCS. 2002 Nov 28;8(11): 1016.

[6]	 Whale G. Plague: plagiarism detection using program structure.
School of Electrical Engineering and Computer Science, Univer-
sity of New South Wales, 1988.

[7]	 Joy MS, Sinclair JE, Boyatt R, Yan JK, Cosma G. Student
perspectives on source-code plagiarism, International Journal for
Educational Integrity. 2013;9(1):3-19.

[8]	 A. Parker and J. Hamblen. Computer algorithms for plagiarism
detection. IEEE Transactions on Education, 32(2):94099, 1989.

[9]	 Fintana FA, Mangiacavalli M, Pochiero D, Zanoni M. On ex-
perimenting refactoring tools to remove code smells. InScentific
Workshop Proceedings of the XP2015 May 25 (p. 7). ACM

Grocevs et al. Modern Algorithms to Identify Plagiarism

