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Abstract. The article presents problems connected to the use of radial basis networks for the approximation
of the ground surface. The main goal of this paper is to research into the predsion of topographic profile
representation with relation to the transfer functionsapplied. The paper contains a description of the structure of a
radial basis network and a description of networks learning by means of the hybrid method with the use of the
notion of the Green matrix pseudoinverse. Special attention was given to the problem of a choice of transfer
functions: the Gauss function, the exponential function, the Hardy function, the spliced function of the third and
fourth degree as well as bicentral functions with an independent slope and rotation. the result of this article is an
exampl e of the operation of a network with relation the transfer functions under discussion.
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Introduction

From the mathematical point of view multilayer sigmoidal neural networks play the part of the
approximation of stochastic functions with several variables, which represent the set of input
variables x € RN onto the set of output variables y e RM [3]. The representation of the input set
onto the output set is effected by adjusting an approximation function of several variables to the
values assigned i.e. stretching over the learning set of a multidimensional hyperplane, which best
adapts to the vector assigned.

Basis networks, in which a hidden neuron realizes a function changing around a chosen center
c, are networks with radial basis functions ¢ = (|x— d|). The role of the hidden neuron boils

down to the radial representation of the space around one point assigned or a group of such
points as a cluster.
The simplest radial network (fig. 1) operates on the basis of multidimensional interpolation,

which consists in adopting p hidden neurons of the radial type and specifying a representation
function F(x) for which the conditions of interpolation are satisfied.
F(x)=d, @)

Fig. 1. The general radial network form
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The generalization properties of a network are degraded when the number of radial functions is
the same as the number of learning data. In this course of action i.e. with the assumption that the

number of centres equals the number of coordinates of the input vector (q =X, i=1..., p), the
model adapts to the learning data, because the number of extents of freedom for the system ( the
number of equations — the number of unknown quantities)

Oy P r P | W d,
it B T @
Por P2 -+ Ppc || Wi dp

is zero. From the above, the generalization quantities of a network are obtained when the
condition K < p is fulfilled, where K is the number of centres c, (i =1,2,...,K), and p is the

number of learning standards (x,d). The vector x is an input vector, and the vector d is an
assigned vector.

M aterials and methods
It has been proved [3] that the adoption of a sufficient number of hidden neurons representing
radial functions ¢(x) makes it possible to solve the task by means of only two network layers:
the hidden layer realizing the function transfer vector ¢(x) of the i™ neuron and the output layer
with one neuron, whose signal is the function of a linear weighted adder.
The architecture of radial networks is analogous in structure to the structure of a multiplayer
neural network with one hidden layer and a linear output neuron. The argument of a radial
function is the distance between the input signal x;and the centre c, and the role of hidden
neurons is played by radial basis functions.
The most frequently used radial function is the Gauss function. With the assumption that its
centre is inpoint ¢ the function has the form (reduced):

¢%n=¢mX—q)emx}L7§£ 3)

where §, is the parameter which determines the width of the function. Apart from the Gauss
function a radial exponential function is used [3,5]

o[- )= —= @)

\/Hx - c||2 +o?

olx—c))=|x-cf"* (n=1.2....) 5)
The diagrams of the abovementioned functions have been presented in figures 2a— 2c.

and a radial linear function
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Fig. 2-a. The Gauss function (3) Fig. 2-b. The expntial function (4)
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Fig. 2-c. The linear function (5)
Fig. 2. Diagrams of radial basis functions

Apart from the abovementioned radial basis functions, in particular cases other function
definitions are used [1], such as for example a spliced function of the second degree

o(jx~ )= (ox~cf Ino|x~d]) (6)
a circular spliced function of the third degree
o’ +3O'2(O'— r)+ 30'(0'— I’)2 +3(0'— r)3 forr<o
ol|x—df)= 4:;2 (20 1) for o<r<2c ©)
0 for 20 <r

and a circular spliced function of the fourth degree
-2r’+3c° for r<o

ol|jx—d|)= 2(172 (20-r) for c<r<2c (8)
0 for 2o <r

where r = |x—c|. Diagrams of the functions (6), (7), (8) have been presented in figures 3a — 3c.
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Fig. 3-c. The spliced funcfn of the fourth degree (8)
Fig. 3. Diagrams of radial basis functions
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Another group of functions used in the learning process of radial networks are bicentral
functions [1], which result from a combination of two sigmoidal functions. The simplest
bicentral function is defined as the product of two sigmoidal functions in the form

Bi(x,c,b, )= 3 5(exp(s )x (x, — ¢ + explt )L 5(exp(s )x (x ¢ —exp))) (@)

i=1
where:

P I —

(L+exp(~x))’

c - centre,
b= max(x )2_ min(x) _ broadening,
s —slope
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Fig. 4-a. b:[5§ 5]and s=[3 3] Fig. 4b. b=[5 5] and s=[1 1]
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Fig.4c. b=[5 2]and s=[0.3 3] Fig.4-d. b=[L 1]and s=[05 0.5]
Fig 4. Examples of bicentral functions for the broadening value b and
the slope of the transfer functions

The form of the bicentral function B (x,c, b,s) can be changed by changing the position of the

centre point c, changing the broadening b and specifying the slope s. Examples of bicentral
functions with relation to the values assumed b and s have been presented in fig. 4a — 4d. The
broadening b and the slope s as independent parameters make it possible to represent more
complicated surface contours than do the Gauss functions [1]. An increase in the accuracy
representation by means of bicentral functions is also possible because of the use of two centres
c +exp(b) as well as ¢ —exp(b), which is different in the case of radial base functions

localised around one centre |x—cj|. Another way of changing the form of a bicentral function is
the use of two independent slopes s and s, which increases the adaptation flexibility of the

functions estimated. The adoption of two independent slopes s and g leads to the definition of
a bicentral transfer function as:

Bi2s(x,c,b,5) = " 5(exp(s)x (x G +explb )i~ o(exp(s)(x —G ~exp(n))  (10)

i=1

51
ISBN 9984 — 779 - 06 - 8



Environment. Technology. Resources. 2005

One of the learning algorithms for neural networks with radial basis functions is the hybrid
algorithm, where learning consists in choosing a suitable number of parameters of radial

functions (p(”x— (,1|) and weights w; so that the goal function is minimized to the form

=3 Swellx e - )}2 an

With the assumption that the parameters of radial functions are known the minimization of the
goal function boils down to solving a set of linear equations with relation to the weight vector w
in the form

Gw=d (12)
where G is a matrix containing the values of radial basis functions called the Green matrix in
the form:

_§011 = (“X.Z - CJ”) P, = (“XJ - Cz") v P = (“XJ - CK”)_
Py = (“)(2 - 01”) P = (“XZ - cz||) Pk = (“)(2 - CK”)

[P = (”Xp N clH) P =p2 Q‘Xﬁ - CZH) TPk T Q‘Xﬁ N CKH)_
The first stage of the hybrid algorithm is the specification of the weight vector w by means of the
notion of the pseudoinverse G ofthe matrix G as

w=G"d (13)
One of the ways of specifying the pseudoinverse G* of the matrix G is the Gram-Schmidt
method of ortogonalization, where the matrix G is decomposed into the matrices Q and R [2].
The matrix Q is a matrix with ortonormal columns with the dimensions px K, and the matrix
R is an upper triangular matrix with the dimensions K x K . According to this method the
pseudoinverse is specified from the relation

G'=R'Q" (14)

In the second stage, with frozen values of input weights, centres and widths of radial basis
functions are adapted with the use of gradient optimization methods, most frequently the method

of the greatest fall. For the goal function defined by the formula (11) the adaptation of centres ¢
and widths of basis functions o is achieved according to the formulas

ok

¢(n+1)=c,()-n-— (15)
o, (n+1)= 0, ()~ (19)

where n — present interaction, (n+1)- subsequent interaction, 7 - learning coefficient.

Results and discussion
Radial basis functions including the transfer functions mentioned in this article have been used
for describing topographic profile. The learning set consisted of 2000 points (X, Y, 2), generated
as dispersed points, whose heights were within the limit of 80+210 m. The assessment of the
quality of neural networks with radial basis functions with relation to the transfer functions used
has been expressed by means of the learning error - RMSE (Root Mean Sguared error) and
presented in fig. 5.
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Fig. 5. The learning results of a redial network with relation to
the transfer function used

The best learning result of a radial network was achieved when the Gauss function (1) was used
as a transfer function, for which the learning error was RMSE=0.09m (fig. 6), and the greatest
error RMSE=0.46m (fig. 7) occurred when a radial linear function was used (3). Learning was

effected by means of the hybrid method in a learning set, which consisted of 2000 points and 500
test points, the number of neurons in the hidden layer was 20 [4].

Fig. 7. A representation of the terrain surface by means of a linear function
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Conclusions

While solving tasks by means of radial basis networks the basic problems are the right choice of
initial parameters and as well as the most suitable transfer function for a particular problem. The
use of a random choice of these parameters increases the probability of stopping the process of
learning at a local minimum. Therefore, it is better to choose initial parameters by means of
procedures based on information in the learning set, and parameters of radial functions obtained
in this way are adopted as initial values. An advantage of radial networks is a simple learning
algorithm and precise network architecture, which is a condition for the starting point to be
closer to the optimum solution in comparison to the algorithm used in sigmoidal networks.
Moreover, the hybrid approach to the specification of parameters of radial functions and the
weight vector simplifies and quickens convergence to the solution of the task of approximation.
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