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Abstract. The article presents problems connected to the use of radial basis networks for the approximation 
of the ground surface. The main goal of this paper is to research into the precision of topographic profile 
representation with relation to the transfer functions applied. The paper contains a description of the structure of a 
radial basis network and a description of networks learning by means of the hybrid method with the use of the 
notion of the Green matrix pseudoinverse. Special attention was given to the problem of a choice of transfer 
functions:  the Gauss function, the exponential function, the Hardy function, the spliced function of the third and 
fourth degree as well as bicentral functions with an independent slope and rotation. the result of this article is an 
example of the operation of a network with relation the transfer functions under discussion.  
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Introduction 

From the mathematical point of view multilayer sigmoidal neural networks play the part of the 
approximation of stochastic functions with several variables, which represent the set of input 
variables NR∈x  onto the set of output variables MR∈y  [3]. The representation of the input set 
onto the output set is effected by adjusting an approximation function of several variables to the 
values assigned i.e. stretching over the learning set of a multidimensional hyperplane, which best 
adapts to the vector assigned.  
Basis networks, in which a hidden neuron realizes a function changing around a chosen center 
c , are networks with radial basis functions ( )cx −=ϕ . The role of the hidden neuron boils 
down to the radial representation of the space around one point assigned or a group of such 
points as a cluster. 
The simplest radial network (fig. 1) operates on the basis of multidimensional interpolation, 
which consists in adopting p  hidden neurons of the radial type and specifying a representation 
function F(x) for which the conditions of interpolation are satisfied. 

                                                               ( ) ii dF =x                                                                  (1) 
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Fig. 1. The general radial network form 
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The generalization properties of a network are degraded when the number of radial functions is 
the same as the number of learning data. In this course of action i.e. with the assumption that the 
number of centres equals the number of coordinates of the input vector ( )pixc ii ,,1   , == , the 
model adapts to the learning data, because the number of extents of freedom for the system ( the 
number of equations – the number of unknown quantities) 

                                         


















=





































pKpKpp

K

K

d

d
d

w

w
w











2

1

2

1

21

22221

11211

ϕϕϕ

ϕϕϕ
ϕϕϕ

                                                (2) 

is zero. From the above, the generalization quantities of a network are obtained when the 
condition pK <  is fulfilled, where K  is the number of centres ( )Kici ,,2,1  = , and p  is the 
number of learning standards ( )d,x . The vector x is an input vector, and the vector d  is an 
assigned vector.  
 

Materials and methods 
It has been proved [3] that the adoption of a sufficient number of hidden neurons representing 
radial functions ( )xϕ  makes it possible to solve the task by means of only two network layers: 
the hidden layer realizing the function transfer vector ( )xϕ  of the ith neuron and the output layer 
with one neuron, whose signal is the function of a linear weighted adder.  
The architecture of radial networks is analogous in structure to the structure of a multiplayer 
neural network with one hidden layer and a linear output neuron. The argument of a radial 
function is the distance between the input signal ix and the centre ic , and the role of hidden 
neurons is played by radial basis functions.     
The most frequently used radial function is the Gauss function. With the assumption that its 
centre is in point ic  the function has the form (reduced): 

                                               ( ) ( ) )
2
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where iδ  is the parameter which determines the width of the function. Apart from the Gauss 
function a radial exponential function is used [3,5] 
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and a radial linear function 

                                             
( ) ( ). 2, ,1     12

=−=− + ncc nxxϕ                                          (5) 

The diagrams of the abovementioned functions have been presented in figures 2a – 2c. 
 
 

                                                     
Fig. 2-a. The Gauss function (3)                                  Fig. 2-b. The exponential function (4) 
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Fig. 2-c. The linear function (5) 

Fig. 2. Diagrams of radial basis functions 
 
Apart from the abovementioned radial basis functions, in particular cases other function 
definitions are used [1], such as for example a spliced function of the second degree 

                                              ( ) ( ) ( )cxcxcx −−=− σσϕ ln2                                              (6) 
a circular spliced function of the third degree 
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and a circular spliced function of the fourth degree 
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where 2cxr −= . Diagrams of the functions (6), (7), (8) have been presented in figures 3a – 3c. 
 

                                             
Fig. 3-a. The spliced function (6)         Fig. 3-b The spliced function of the third degree (7)  

                     
Fig. 3-c. The spliced function of the fourth degree (8) 

Fig. 3. Diagrams of radial basis functions 
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Another group of functions used in the learning process of radial networks are bicentral 
functions [1], which result from a combination of two sigmoidal functions. The simplest 
bicentral function is defined as the product of two sigmoidal functions in the form 

        
( ) ( ) ( )( )( ) ( ) ( )( )( )( )∑

=

−−×−+−×=
n

i
iiiiiiii bcxsbcxsBi

1

expexp1expexp,,, δδsbcx          (9) 

where: 

( ) ( )( )x
x

−+
=

exp1
1δ , 

c  – centre, 
( ) ( )

2
minmax ii xx −

=b  - broadening, 

s  – slope.  
 

                                  
Fig. 4-a. [ ]55=b  and [ ]33=s                Fig. 4-b. [ ]55=b  and [ ]11=s  

                                
Fig. 4-c. [ ]25=b  and [ ]33.0=s              Fig. 4-d. [ ]11=b  and [ ]5.05.0=s  

Fig 4. Examples of bicentral functions for the broadening value b and  
the slope of the transfer functions 

 
The form of the bicentral function ( )sbcx ,,,iB  can be changed by changing the position of the 
centre point c , changing the broadening b  and specifying the slope s . Examples of bicentral 
functions with relation to the values assumed b  and s  have been presented in fig. 4a – 4d. The 
broadening b  and the slope s  as independent parameters make it possible to represent more 
complicated surface contours than do the Gauss functions [1]. An increase in the accuracy 
representation by means of bicentral functions is also possible because of the use of two centres 

( )ii bc exp+  as well as ( )ii bc exp− , which is different in the case of radial base functions 
localised around one centre cx − . Another way of changing the form of a bicentral function is 
the use of two independent slopes is  and is′ , which increases the adaptation flexibility of the 
functions estimated. The adoption of two independent slopes is  and is′  leads to the definition of 
a bicentral transfer function as: 

        ( ) ( ) ( )( )( ) ( ) ( )( )( )( )∑
=

−−×′−+−×=
n

i
iiiiiiii bcxsbcxssBi

1

expexp1expexp,,,2 δδsbcx        (10) 
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One of the learning algorithms for neural networks with radial basis functions is the hybrid 
algorithm, where learning consists in choosing a suitable number of parameters of radial 
functions ( )cx −ϕ  and weights jw so that the goal function is minimized to the form 
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With the assumption that the parameters of radial functions are known the minimization of the 
goal function boils down to solving a set of linear equations with relation to the weight vector w  
in the form 

                                                                       dw =G                                                             (12) 
where G  is a matrix containing the values of radial basis functions called the Green matrix in 
the form:  
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The first stage of the hybrid algorithm is the specification of the weight vector w by means of the 
notion of the pseudoinverse +G of the matrix G  as 

                                                             dw += G                                                                    (13) 
One of the ways of specifying the pseudoinverse +G  of the matrix G  is the Gram-Schmidt 
method of ortogonalization, where the matrix G  is decomposed into the matrices Q  and R  [2]. 
The matrix Q  is a matrix with ortonormal columns with the dimensions Kp × , and  the matrix 
R  is an upper triangular matrix with the dimensions KK × . According to this method the 
pseudoinverse is specified from the relation 

                                                                TQR 1−+ =G                                                            (14) 
In the second stage, with frozen values of input weights, centres and widths of radial basis 
functions are adapted with the use of gradient optimization methods, most frequently the method 
of the greatest fall. For the goal function defined by the formula  (11) the adaptation of centres c  
and widths of basis functions σ  is achieved according to the formulas 
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where n  – present interaction, ( )1+n – subsequent interaction, η  - learning coefficient. 
 

Results and discussion 
Radial basis functions including the transfer functions mentioned in this article have been used 
for describing topographic profile. The learning set consisted of 2000 points (x, y, z), generated 
as dispersed points, whose heights were within the limit of 80÷210 m. The assessment of the 
quality of neural networks with radial basis functions with relation to the transfer functions used 
has been expressed by means of the learning error – RMSE (Root Mean Squared error) and 
presented in fig. 5.  
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Fig. 5. The learning results of a redial network with relation to 

the transfer function used 
 
The best learning result of a radial network was achieved when the Gauss function (1) was used 
as a transfer function, for which the learning error was RMSE=0.09m (fig. 6), and the greatest 
error RMSE=0.46m (fig. 7) occurred when a radial linear function was used (3). Learning was 
effected by means of the hybrid method in a learning set, which consisted of 2000 points and 500 
test points, the number of neurons in the hidden layer was 20 [4]. 

 

 
Fig. 6. A representation of the terrain surface by means of the Gauss function 

 
Fig. 7. A representation of the terrain surface by means of a linear function 
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Conclusions 
While solving tasks by means of radial basis networks the basic problems are the right choice of 
initial parameters and as well as the most suitable transfer function for a particular problem. The 
use of a random choice of these parameters increases the probability of stopping the process of 
learning at a local minimum. Therefore, it is better to choose initial parameters by means of 
procedures based on information in the learning set, and parameters of radial functions obtained 
in this way are adopted as initial values. An advantage of radial networks is a simple learning 
algorithm and precise network architecture, which is a condition for the starting point to be 
closer to the optimum solution in comparison to the algorithm used in sigmoidal networks. 
Moreover, the hybrid approach to the specification of parameters of radial functions and the 
weight vector simplifies and quickens convergence to the solution of the task of approximation.  
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