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Abstract. In present paper the problem of efficiency evaluation of technical system by measurable structural design 

parameters is investigated. To accomplish the purpose of considered problem the mathematical model is constructed 
in the form of a finite-dimensional operator equation, where desired elements are both influence weights of the 
calculated structural design parameters and technical effectiveness indicator of the system. First, the constructed 
model is reduced to the normal system, and then the apparatus of the ill-posed inverse problem theory is used for the 
reduced problem: a regularizing operator is constructed and an algorithm for finding the regularization parameter is 
developed.  
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I INTRODUCTION 

The technical system according to one of numerous 
definitions (see, for instance, [1], [2]) is a set of 
elements of the system (mechanisms, assemblies, 
components and similar components of the system) 
that interact with each other during the process of 
performing the specified functions. In the named 
definition it is worth to emphasize that the concepts 
"the technical system" and "the system components" 
can be mutually expressed one by the other, and 
depending on the purpose of the research, the required 
accuracy, the information level about the reliability 
and the similar factors and characteristics, the 
considered / introduced concrete concept "the 
technical system" for the certain problem-target can be 
converted into "the system element" for another 
problem-target. However, in contrast to the above 
given definition of the technical system, in this paper 
we distinct the "system" and "elements" concepts and 
we try to identify, first, the level of influence (in other 
words: the importance / significance / weight / weight 
of influence) of possible defects in each element of the 
technical system on the operability of all other 
elements (with or without possible defects in these 
elements) of the same technical system; second, the 
resulting / cumulative impact of possible defects in all 
elements of the given technical system on the 
operation of the whole investigated technical system. 

Here, anticipating things, it is necessary to note the 
following: 

 if such mutual influence of possible defects in 
the elements of the technical system are 
missing or negligible then the investigation 
results of the constructed mathematical model, 
which describes the considering problem of the 
defects mutual influence, should reflect this 
fact; 

 the technical system possible defects in all 
elements resulting / cumulative influence on 
the operating of the whole studied technical 
system is not a simple sum of the effects of 
these defects, and, moreover, may not be a 
linear combination (with constant coefficients) 
of the effects of these defects. 

The aforementioned considerations lead us to the 
following two natural questions: 

1. What is the measure of influence of each 
element possible defects of the given technical 
system on each of all the other technical system 
elements performance? Is it possible to define 
these individual measures of defects mutual 
influence in cases when there is only given a 
set of calculated / controllable parameters 
measurement values of the system? 

2. If the answer to the first question, which has 
been formulated above, is positive, then is it 
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possible to stably (in the sense of Tikhonov: 
see, for instance, [3]) find out the effectiveness 
of the technical system under investigation 
without any additional assumptions and 
information? 

Before attempting to answer these two questions, 
let us briefly discuss the general scheme of the 
technical systems effectiveness quantitative 
evaluation. It should be emphasized that speaking 
about the technical system effectiveness usually is 
meant the effectiveness of its use as an active mean 
for typical operations, for which purposes the system 
is intended. If the considered technical system is a 
multi-purpose, and if such a multipurpose technical 
system for each objective has a high efficiency, it 
means that such a system has wide functionality, i.e. it 
has qualities that reflect the ability of the system to 
meet the challenges associated with achieving each 
goal. In applied researches, the effectiveness of 
technical systems usually has to solve the following 
two problems: (1) the problem of choice, which 
essence is to evaluate operations effectiveness with 
the use of technical system; (2) the problem of choice, 
which essence lies in the choice of a rational strategy 
for the use of technology in the operation. The 
problem of effectiveness is closely related to the 
reliability problem in technical systems see, for 
instance, [4], [5]). The complexity growth of technical 
systems reduces their reliability and, therefore, 
reduces their effectiveness. Unreliable technical 
system cannot be an effective way of achieving the 
goal. The operation effectiveness analysis provides an 
approach to determine the required parameters of the 
technical system reliability that are used as active 
means in the operation. This is one of the important 
aspects of the reliability and effectiveness problems 
interconnection. Another aspect of the relationship of 
these problems is to determine the rational ways of 
use for the available resources to improve the 
reliability of the developing technical systems. 

The essence of this work – to give an unequivocal 
answer for the formulated above two important issues 
without requiring additional information about the 
technical state of system elements. As it will be shown 
the obtaining of such a clear answer is done by 
transformation of the technical system efficiency 
indicator finding task to the inverse problem, which 
has the form of the first kind finite-dimensional 
operator equation, and a subsequent development of a 
regularized method for its sustainable solutions.  

II GENERAL SCHEME OF EFFICIENCY 

EVALUATION OF TECHNICAL SYSTEMS AND 

METHODS OF WEIGHTING COEFFICIENTS 

There are many methods for the quantitative 
evaluation of the effectiveness of technical systems 
(see, for instance, [1], [4], [5]), the majority of which 
are operation research methods: the criterion of 

efficiency and constraints (significant and sign 
constraints) are made; the output effect and costs (or 
the result of the operation of the technical system) are 
determined, wherein, the costs can be determined at 
the production or design stages of the considered 
technical system, as well as during operation of the 
system. However, all these methods have a common 
scheme, which can be represented as the functional 

  1; ,..., ; ,
def

mE y t F y y C t             (1) 

where m  is a number of elements in the technical 
system;  1,..., ;i i ny f x x t  is a technical indicator of 

the system i -th  1,i m  element, which is also called 

the i -th partial quality indicator; n  is a number of 
controllable / calculated (mainly structural-
constructive) parameters of the technical system; 

 
1,j j n

x


 are controllable / calculated parameters of 

the system; t  is time; C  is total expenses (in other 
words, the total cost) for the development, design and 
operation of the system. 

As is clear from (1), the variation in methods for 
finding the efficiency ;E y t    is caused by specific 

types of functions    1,..., ; 1,i nf x x t i m  and .F  

Namely, constructing the function

   1,..., ; 1,i nf x x t i m  and F  in different ways, we 

obtain different formulas for calculating ,E  at the 

same time, if designed function    1,..., ; 1,i nf x x t i m  

and F  will have an analytical form, then the 
calculation of ;E y t    is not difficult, since the 

controllable / calculated parameters of the investigated 
technical system are known for each case / state of the 
system; if the explicit form of the functions is not 
known, then in order to calculate ;E y t    are mainly 

used statistical methods or sometimes only evaluation 
of ;E y t    according to one of the most important 

quality partial indicators   . 1;...;impy imp m , and 

over the other partial quality indicators are placed 
constraints so that they do not exceed certain limits: 

  
.; ,

1, ,

imp

i i i

E y t y

y y y i m imp

   


  

         (2) 

where iy  and iy  are respectively the lower and upper 

limits of i -th  1,i m  partial quality indicator. 

The effectiveness evaluation of the technical 
systems according to the rule (2) has the 
disadvantage – the solution of the corresponding 
optimization problem (i.e., the same problem (2) with 
the criterion .; supimpE y t y     or the problem of 

implementation choice for practical optimization 
technical system version will be ambiguous, since the 
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criterion choice is ambiguous: you can get a lot of 
options for systems with the same or almost the same 
main partial quality indicator .impy  with significantly 

different other partial indicators that satisfy the 
constraints; therefore, it cannot be guaranteed that the 
determined version of the system will be closer to the 
optimum. 

One of the widely used and well-studied methods 
for the effectiveness estimation of technical systems is 
the method of weighting coefficients, in which the 
function F  is represented as a linear combination of 

functions  1, :iy i m  

 

 
 

   

1

1

1

1
;

1
;

; ,

: 1 1, ,

1, ,

inf ,..., ; ,

sup ,..., ; 1, .

mdef

i i

i

mdef

i i i

i

i i i

def

i i n
x t

def

i i n
x t

E y t y

i m

y y y i n

y f x x t

y f x x t i m



  







    

            
   







 








     (3) 

In (3) weighting coefficient i   is called the 

coefficient importance / significance of the i -th 

 1,i m  partial quality indicator and generally 

speaking, is the desired number; set   is called the 
set of importance or preference. Without going into 
details, we list the well-known, the main advantages 
and disadvantages of the method of weighting 
coefficients (3), the final destination of which is the 
choice of the best option among the alternatives in the 
development, design or operation of complex 
technical systems. As the merits may be listed the 
following: ease of formalization; the possibility of 
taking into account all the main partial quality 
indicators; opportunity to take into account the 
preferences of the decision maker about the problem 
during the weighting coefficients setup; clear physical 
/ technical / economic sense. The main drawbacks the 
following may be indicated: subjectivity in weighting 
coefficients; the accountability lack of dependence on 
the weighting coefficients values of partial quality 
indicators. 

In conclusion of this section we note that the 
independent objectives are both determination of the 
weighting coefficients of partial quality indicators of 
the technical system and the problem of finding / 
evaluation of these partial system indicators. 
Currently, there are a lot of analytical, analytical and 
numerical, logical, statistical, sets and graphs based, 
expert, etc. methods, which are successfully used, for 
solving these independent problems. Exhaustive 

information about the basic and the most common 
these methods, as well as a fairly complete overview 
of them with reasonable instructions of strengths, 
weaknesses and areas of application can be found in 
[5], [6]. Exhaustive information on the design of 
experiments in technics / technology and processing 
of the obtaining experimental data can be found in [7]-
[9]. Therefore, in this paper we will not deal with any 
problem of finding controllable / calculated structural 

design parameters  
1,j j n

x


 of technical system, or 

partial quality indicators estimation problem   1,i i m
y


 

of technical elements of the system, and in the 
following sections of this paper, we assume that all of 
them are known to us aposteriori.  

III MATHEMATICAL FORMULATION OF THE 

PROBLEM 

We consider the functional 

1

; ,
ndef

i i

i

E y t y


                  (4) 

appearing in the method of weighting coefficients (3). 
Obviously, the formula (4) to calculate the efficiency 
of technical systems from the known information 

about the partial quality indicators  1,iy i n  of 

system elements is unable to determine which of the 
controllable/calculated structural design parameters of 
technical system in a given period of time has a 
significant impact on partial indicators of the elements 
of the technical system and, consequently, the 
common efficiency indicator of the system. 
Furthermore, according to this formula it is impossible 
to determine how different is the influence of the same 
structural design parameters to different parts of the 
system, which partial quality indicators (consequently, 
their reliability) significantly differ from each other or, 
conversely, very similar. In other words, the formula 
(4) does not distinguish the influence measure of each 
controlled parameter of the system on common 
efficiency indicator of the system, both in time and in 
the given set of controlled technical parameters for 
each element of the system. Therefore, the partition of 
the elements of technical system under consideration 
by their influence both on the partial quality indicators 
of elements, and the common efficiency of the whole 
system is impossible. Obviously, the disadvantage of 
the formula (4) is removed if for each element of the 
system we will take into account each controllable 
technical parameter with its "individual influence" – 
the weight, which will depend on both the time t  and 
on each controlled/calculated indicator (index j ) of 

each element (index i ) of considered technical 
system. In other words, instead of the method (3) we 
propose to consider the method (let us call it the 
method of individual weighting coefficients), in which 
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the functional of efficiency indicator of technical 
system has the form 

   1 2

1

ˆ; ,
ndef

ij ij

j

E i t C w t x t C


                  (5) 

where n  is a number of controllable/calculated 
structural design parameters of technical system; 
m  is the elements number of the technical system; 

for each fixed  1,i i m  and ,start endt T T    the 

parameters   ˆ , 1,ijx t j n  is a result of 

standardization by means of any method applied to 
initial controllable structurally design parameters of 
technical system, for example, by the formula (for 
instance, see the fundamental books [10], [11]) 

    ˆ / ,ij ij j jx t x t m    through jm  is denoted the 

average deviation of the j -th indicator and by j  is 

denoted the standard deviation of the j -th indicator; 

,start endT T    is time interval during which the 

technical system effectiveness is studied and the 
structural design parameters values of technical 
system are fixed (locked); startT  and endT  are 

respectively the initial and final moments of the time 
interval; constants  1;2iC i   are chosen in such a 

way that they are, respectively, the centers of two 
clusters of technical system elements with the worst 
and the best values of structural and design 
parameters, wherein, if the clusters overlap, it is 
possible to apply FCM (the fuzzy c-means clustering 
algorithm) or PCM (the possibilistic c-means 
algorithm) algorithm (see, for instance, [12]); for each 

i -th  1,i m  element of technical system the desired 

weight of the j -th  1,j n  controllable / calculated 

structural design parameter into the common 
effectiveness indicator of the entire technical system 
at every fixed time ,start endt T T    denoted as 

  1,

1,
.

j n
ij i m

w



 Coefficients   1,

1,

j n
ij i m

w



 we call the weights 

of individual influence.  
Thus, in the proposed formula (5) the numbers 

,n  ,m  1 ,startT   1 ,endT   

   1,1

1,
ˆ

j n

ij
i m

x t





  and  1 1;2iC i   are known 

data; the weight of individual influence   1,

1,

j n
ij i m

w



 and 

the common effectiveness indicator ;E i t    of technical 

system are sought. It is obvious that in formula (5) 
there are exactly  1 s em n T     (here s eT   means 

the length of the time interval ,start endT T    measured 

in an integer number of conventional units) unknown 

 ijw t  and  , ,E i t  which should be uniquely defined 

via  2s em n T     initial data   , , ,ijx t A B  connected 

by exactly s em T   linear algebraic equations. 

Indeed, the individual influence coefficient 

  1,

1,

j n
ij i m

w



 are time-dependent, i.e.  ij ijw w t  for 

 1,2,...,i m   and  1,2,..., ,j n   since the influence 

measure of the same structural design parameter of the 
considered technical system on the partial component 
of the same element of the technical system at 
different time may vary. In other words, generally 
speaking,    1 2fix fix fix fixi j i jw t w t  for 1 2.t t  However, 

taking in formula (5) the stationary weights in the 
individual influence, we are thus considering the case 
when the weights are different only relatively n  
controlled / calculated structural design parameters of 
technical system, and are constants in time 

,start endt T T    and relatively elements 1, .i m  

Therefore, the introduced functional (5) under these 
assumptions is equivalent to functional 

 1 2

1

ˆ; .
n

j ij

j

E i t C w x t C


        Further, for the time 

interval ,start endT T    constructing a discrete mesh in 

the form of , :k start endt T T     1 ,k startt T k      

1, ;k K     / 1 ;end startT T K      / 1 ,K   and 

then introducing the notation  ˆ ˆikj ij kx x t  and 

;ik kE E i t     for 1, ; 1, ; 1, ;i m j n k K    we obtain the 

following final analytical formula for the functional in 
the proposed method of the individual weighting 
coefficients: 

1 2

1

ˆ .
n

ik j ikj

j

E C w x C


              (6) 

So, summarizing the abovementioned and 
abstracting from the subject area of the considered 
problem, we can formulate the following 
mathematical problem: it is required to find a stable 
solution of a linear algebraic equations system (6) 

relatively  m K n   unknown   1,
1,

k K
ik i m

E



 and 

 
1,j j n

w


 for  5n m K    known initial data 

   1ˆ 1, ; 1, ; 1, ;ikjx i m k K j n     ;n  ;m  

 / 1 ;K   1 1;2 .iC i   Obviously, the system (6) 

is not a normal system, and therefore, the concept of 
its "solution" should be clarified.  
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IV REDUCTION OF THE PROBLEM TO THE 

INVERSE PROBLEM 

Let us introduce an augmented matrix X  with 
dimensions    ,m K m K n     which of elements 

 ikjx  are calculated by the following rule: 

    
    

1

1 ;

0 ;

ˆ .

def

ikj

ikj

if j n K i k j K n

x if j n K i k j K n

C x if j n

       

       


 

    (7) 

Then the system (6) has the form: 

 2

1

1, ; 1, ,
m K n

ikj j

j

x w C i m k K
 



             (8) 

where 

 
;

1 , 1, , 1, .

def j
j

ik

w if j n
w

E if j n i K k i m k K

 
      

  

Introducing the notation    1,
;j j m K n

W w
  

   

2 2,..., ,

T

m K

C C C



 
   
 
 


  the system (8) becomes 

.XW C                    (9) 
Thus, the original problem (6) is reduced to the 

problem (9), where we want to define the 

  1m K n    size vector W  under the known 

   m K m K n     size matrix X  and the   1m K   

size vector .C  The system (9) consists of m K  
equations with  m K n   unknown ,jw  i.e. number 

of unknown is larger exactly by n  values than the 
amount of equations. In other words, the system (9) is 
an underdetermined system of linear algebraic 
equations. Hence, the question arises: what should we 
mean by a solution of the system (9)? We introduce 
the following concept. 

Definition 1. Let us call the element W  as a 
generalized solution of underdetermined system (9) if 

2
. arg min ,m Km K ng s

W
W XW C  

 
 
            (10) 

where the norm in a Euclidean space m KR   is 

understood as a Schur norm: 2

1

.m K

m K

ij

j

y y





   

It is obvious that in order to find the generalized 
solutions of the system (9), according to the definition 
1, it is required to solve the unconditional 

optimization problem 
2

min .m K m K nW
XW C   

 
  
   For 

this purpose, we construct the Euler equation (for 
instance, see [3]) for the functional 

  2
m K

def
V W XW C  


    and then we equate it to zero: 

1
2 , 0.

2

def
T T TV W X XW X X W X C               Hence, due 

to the arbitrariness of the increment ,W  we will have 

,T TX XW X C                    (11) 
The finite-dimensional operator equation (11) is the 

Euler equation for the unconditional extremum 

problem  
2

min .m K m K nW
XW C   

 
  
   The operator 

equation (11), in contrast to the system (9), is a normal 
system: there are exactly  m K n   linear algebraic 

equations and the same number of unknowns 

   1,
.j j m K n

w
  

  So, we see that the generalized 

solution .g sW  of the system (9) is a classical solution 

of the normal system of linear algebraic equations 
(11), and vice versa. Since the matrix ,X  elements of 
which are calculated by the formula (7), is strongly 
sparse matrix, the determinant of the principal matrix 

TX X   can be arbitrarily small, i.e.  det 1TX X    or 

even  det 0.TX X    Consequently, it is wrong to 

solve the system (11) by any direct methods, i.e. the 
desired solution W  of the system (11) cannot be 

expressed by the formula   1
,T TW X X X C


      from 

which according to the well-known Cauchy inequality 

  1T TW X X X C


       implies stability of the 

problem (9) solution by C  and X  in the sense of a 
generalized solution. In addition to the 
abovementioned problem of ill-conditioned system 
(11) (this causes the instability of its solution), 

violation of the condition  det 0TX X    also violates 

the Hadamard correctness (see, for instance, [3], [13], 
[14]) of the system (9) in the sense of a generalized 
solution, namely, the generalized solution, as the 
solution of the normal system (11), may be non-
unique, and then is determined up to elements of the 
kernel ker X  of main matrix .X  Therefore, in this 

case if (1)W  is a generalized solution of the system 

(9), then each column-vector    1 2 ,W W W     where 
 2W  is an element of the kernel ker ,X  i.e. 
 2 ker ,W X   will also be a generalized solution of the 

system (9), moreover, all these solutions can 
arbitrarily differ from each other. Therefore, there 
should be formulated solution selection criterion. The 
following concept gives the criterion: 

Definition 2. The generalized solution with minimal 
Schur norm we call the normal generalized solution. 
In addition, the pseudosolution of the system 

  1,

1,
; ;

j nn m
ij i m

Az u z u A a




     
 

   is called (the 
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pseudosolution concept first introduced in the works 

[15], [16]; a vector  pseudo ,nz   which minimizes 

the residual Az u  on the entire space .n  Since the 

system Az u  may have more than one pseudo-
solution, then we can talk about the set AF  of 

pseudosolutions .Az u  The normal solution of the 

system Az u  respecting to the vector  1 nz   is 
called (for instance, see [3]) a pseudosolution 
 0 nz   with minimal norm  1 ,z z  i.e. such that 

     0 1 1inf .
Az F

z z z z


    For simplicity we can always 

assume that  1 0,z   and then the normal solution with 

respect to vector  1 nz   can be simply called the 
normal solution. It is important to emphasize that for 
any system Az u  the normal solution always exists 
and is unique. It is appropriate to note that the normal 
solution of the system Az u  can also be defined as a 
pseudo-solution that minimizes a given positive 
definite quadratic form in the coordinates of the vector 

 1 .z z  Since the set of generalized solutions 
2 2

. .: m Km K m K

m K n
g s g s

W
W XW C min XW C  

 



 
    

  
       is 

a compact set (i.e. convex and closed set), then by the 
Weierstrass theorem, there exists a unique element 

.g sW  of this compact set, which has the least distance 

from zero, i.e. there exists a unique element .g sW  with 

the smallest norm. In other words, the normal 
generalized solution is unique, and it is uniquely 
determined. It is known, such a solution of the system 
(9) can be found using the pseudoinverse Moore-

Penrose matrix: . ,g sW X C    where through X   is 

denoted the pseudoinverse Moore-Penrose matrix with 
the dimensions    ,m K n m K     and is given by 

,XX X X                      (12) 
or by theoretical asymptotic formula 

  1

0
lim ,T TX X X I X






                (13) 

where through I  is denoted an identity matrix. 
It should be emphasized that both the relation (12) 

and the asymptotic formula (13) are inconvenient for 

practical finding of .X   Relatively easy formula for 

finding practical pseudoinverse matrix X   is the 
following formula: 

    1 1

1 2 1 1 1 2 2 2 ,T T T TX X X X X X X X X
                  (14) 

where 1 2X X X    is an ambiguous skeleton 

decomposition of the matrix ,X  at that 2X  has the 

dimension   ,m K r   but 1X  has the dimension 

 ,r m K n    where 1 2.r rangX rangX rangX      At 

different skeletal decompositions we always obtain the 
same normal generalized solution for pseudoinverse 

matrix .X   
Now let us ask whether the normal generalized 

solution is stable? Since the normal generalized 
solutions .g sW  satisfies the inequality 

. ,g sW X C     then it is obvious, the normal 

generalized solution is stable for variations of right 
side of the system (9). However, the construction of 

pseudoinverse matrix X   by formulas (12)-(14) 
implies that the solution (9) in the sense of the normal 
generalized solution does not become stable for 
arbitrary variations of the main matrix X  of system 
(9). Therefore, if the elements of matrix X  initially 
and/or during the computer calculations may start 
perturbing (for studied in this paper problem such 
disturbances are quite typical, because the original 

data  1, ; 1, ; 1, ,ikjx i m j n k K    calculated 

according to the formula (7), are the results of 
experimental measurements of controlled/calculated 
structural design parameters of considered technical 
system, and the measurement results always have 
errors), then the method of Moore-Penrose does not 
give a true solution of the system (9). Consequently, 
the problem of finding a stable solution of a finite 
dimensional operator equation (11), and thus, a stable 
solution of the system (9), is still open, and it is 
required to construct the regularized algorithms for the 
normal generalized solution finding. Note that if the 
equation (11) is solvable in a classical way, then its 
normal generalized solution is called a normal 
solution. 

Thus, the obtained problem (11) refers to the theory 
of inverse problems. As already mentioned above, we 

cannot take every found element W  from (11) as an 
exact or approximate solution. It is intuitively clear 
that there is needed the possible solutions selection 
principle. It usually requires the use any available 
additional information about the solution. Such 
information may have qualitative or quantitative 
nature, and the desire to use quantitative information 
allows select a compact set ,M F  where initially 
Hadamard ill-posed problem becomes well-posed 
problem (according to Tikhonov). In other words, the 
use of additional quantitative information eliminates 
the instability of the inverse problem (11) solution. 

V THE CONSTRUCTION OF THE 

REGULARIZED SOLUTION ALGORITHM 

Thus we consider the problem 
 , ; ,T T TX XW X C W F X C U                 (15) 

where the inverse operator   1TX X
   does not exist, or 

exists, but, generally speaking, is not a continuous 
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operator on the image of the set F  when mapping it 

using the operator ,TX X   i.e. on the set of .TX XF   
Furthermore, the problem (15) is essentially incorrect, 
i.e. in the equation (15) small change of the right-hand 

side ,TX C U  which is related to its approximate 

nature, may lead outside the set .TX XF    
Thus, in (15) the set F  of possible solutions of the 

equation (15) is not compact. Suppose that it is a 
priori known that the function exW  is a normal 

generalized solution of equation (15) at the precisely 

given right-hand side part   ,T T

ex
X C X C    i.e. 

  .T T
ex

ex
X XW X C      If in (15) instead of the precisely 

given right-hand side part  T

ex
X C  we know its 

approximation   ,TX C


  as well as the value ,  that 

characterizes the closeness degree of  TX C

  to 

  ,T

ex
X C  the problem is to find an approximate 

normal generalized solution W
  to the exact solution 

,exW  having the stability towards small changes 

 TX C


  property by the known initial data 

  ; .TX C

  As it has been already mentioned in the 

previous section of this work, for an approximation of 
the normal generalized solution W

  of equation (15) 

we cannot use the exact solution of the approximate 

equation   .T TX XW X C 
      In other words, the 

vector    1T TW X X X C 


      is not an approximate 

normal generalized solution of equation (15) with the 

approximate right-hand side   :T TX C X C


    

   , ,T T
U

ex
X C X C


    

 
    since the vector W

  exists 

for not any arbitrary element .TX C U  Furthermore, 
as it was shown in the previous section of this work, 
the normal generalized solution lacks stability 

property to small changes in the right hand side TX C  

of equation (15). The value    ,T T
U

ex
X C X C


     

 
    

characterizes the error of the equation right hand side 
part of (15). Therefore, obviously, it is necessary to 
determine an approximate normal generalized solution 
W
  of equation (15) using an operator 

(action/technique), which depends on the numerical 

parameter    , .T T
U

ex
X C X C


     

 
    And the values 

of this operator must be taken according to the error 

,  namely, the consistency must be such that the 
approaching in the metric space U  of the right hand 

side part  TX C

  of equation (15) to the exact value 

  ,T

ex
X C  the found (by means of an operator, which 

depends on a parameter  ) approximated normal 

generalized solution W
  approaches to the desired 

exact normal generalized solution exW  of the equation 

 T T
ex

ex
X XW X C      in the Schur metric .F  Thus, the 

main task – the problem of the equation approximate 
normal generalized solution finding (15), resistant to 
minor changes in the right-hand side part, – reduces to 
the solution of the following two "side" problems: the 
first "side" problem is to find a regularizing operator 
for the equation (15) relatively to the element 

  ;T T
ex

ex
X C X XW     the second "side" problem is to 

determine the regularization parameter   by 
additional information about the problem, for 
example, the error value, which is given for the right-

hand side  TX C

  (in this case     ). 

Let us discuss now these "sides" problem. First of 
all we assume that a regularizing operator exists: we 
denote it by  .kmR r  Then, as a solution to the 

original problem (15) the element TW RX C    may be 
chosen. Let us construct a regularizing operator .R  
For this purpose the algorithm, enables finding the 

inverse   1TX X
   matrix, is based on the regularization 

method idea by academician A.Tikhonov ([3]). 
Another regularization algorithm, which has proved 
itself to be suitable enough while solving various both 
linear finite-dimensional operator equations of a first 
kind, and linear infinite-dimensional operator 
equations of a first kind is presented below. The 
algorithm consists of the following steps: 

Step 0. The initial data are given ;n  ;m  

   1ˆ 1, ; 1, ; 1, ;ikjx i m k K j n      1 1;2iC i   

in equation system (6). 
Step 1. The origin system (6) is reduced to a system 

(15). 
Step 2. The sequence of parameters, for example, 

 2 1,2,3,... ,l
l l    is taken and for the two (eg., the 

first two) adjacent parameters 
0l

   and 
0 1l    of 

this sequence is solved the following system equations 

relatively to  2m K n   unknowns :lir  

    
1

, 1, ,
m K n

T
li lk ji

il
j

r r X X i l m K n  
 



         
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where    
1

.
m K ndef

T T
ji

jp ip
p

X X X X
 



       

Step 3. For each of the parameters 
0l

   and 

0 1l    the coordinates    1,
l

l m K n
w

  
  of the 

column-vector W  are found by formula 

    
1

1, .
m K n

T
l l i

i
i

w r X B l m K n 
 



        

Step 4. The condition 10 0
0

l l

m K n
W W

  

 
 


   is 

verified, where 0  is the desired accuracy (for 

example, 3
0 10   of the approximate normal 

generalized solution regarding the exact solution 
(which is unknown). If the answer is positive, then we 
finish the algorithm: the approximate normal 

generalized solution 1 2W W    is found and, 

therefore, the desired  1,jw j n  and   1,
1,

k K
ik i m

E



 in 

the initial equation (6) are found, wherein we have 

j jw w   for ,j n  and for  1, ; 1,i m k K    such 

that  1 ,j n i K k      we have ik jE w   for 

   1 , .j n m K n     If 10 0
0,l l

m K n
W W

  

 
 


   then 

we move to the step 2, where we assume 
0 0 1l l    

and 
0 01 2 .l l    The given theoretical reasoning of 

the papers [17]-[19] guarantees the algorithm is finite, 
and the result of the algorithm will be a normal 
generalized solution of the system (6). 

Remark. The desired optimal regularization 
parameter opt   can be found by means of 

qualitatively different method – generalized residual 
method (see, for instance, see [20]), which is more 
versatile and accurate method, but also requires more 
complex calculations. A qualitatively new approach to 
find quasi-optimal regularization parameter, which 
combines simplicity and accuracy, is in detail 
described (with many appendices) in the monographs 
[13], [14]).  

VI CONCLUSIONS 

In this paper we investigate the problem of the 
effectiveness estimation of the technical systems from 
the measurable structural design parameters. A 
fundamentally new approach, where, in contrast to the 
traditional approaches, is no need to determine in 
advance the kind of partial quality indicators of the 
technical system and to find the weights of these 
partial indicators (the weights determination of 
particular indicators is subjective and ambiguous: 
hence, it cannot be guaranteed to identify which 
option of the destination choice weights provides 

optimal effectiveness of the studied technical system). 
The proposed in this paper approach is based on the 
apparatus of the inverse and ill-posed problem theory, 
namely, first, a mathematical model is built, which is 
the underdetermined finite-dimensional operator 
equation with respect to unknown influence weights 
of the calculated structural design parameters, as well 
as the desired effectiveness indicator of the technical 
system; the built model is reduced in a special way to 
the normal system of algebraic equations with 
approximate initial data; the parametric regularizing 
operator is built for a stable solving of the obtained 
normal system – this operator, in case of an 
appropriate parameter choice (which is called the 
Tikhonov regularization parameter), guarantees the 
stability of the approximate solution found for the 
normal system; the fairly simple to implement and 
efficient algorithm of finding the regularization 
parameter is offered for the constructed regularizing 
operator; a closed formula determines the calculated 
structural design parameters weights of the technical 
system and, thus, the effectiveness rate of the 
technical system under study. 

It should also be noted that the proposed approach 
eliminates one of the main drawbacks of a well-known 
and frequently used method of weighting coefficients 
(this method is the main method for multicriterion 
linear programming problems solving) – the 
accountability lack of the weighting coefficients 
dependence on the partial quality indicators values of 
the considered technical system.  
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