

Environment. Technology. Resources, Rezekne, Latvia

Proceedings of the 10th International Scientific and Practical Conference. Volume III, 71-75

ISSN 1691-5402
© Rezekne Higher Education Institution (Rēzeknes Augstskola), Rezekne 2015

DOI: http://dx.doi.org/10.17770/etr2015vol3.168

Storing an OWL 2 Ontology in a Relational
Database Structure

Henrihs Gorskis, Arkady Borisov

Riga Technical University,
1 Kalku Str., Riga LV-1658, Latvia

Abstract. This paper examines the possibility of storing OWL 2 based ontology information in a classical relational

database and reviews some existing methods for ontology databases. In most cases a database is a fitting solution for
storing and sharing information among systems, clients or agents. Similarly, in order to make domain ontology
information more accessible to systems, in a comparable way, it can be stored and provided in a database form. As of
today, there is no consensus on a specific ontology database structure. The main focus of this paper is specifically on
OWL 2 as a basis for the description of ontology centric information in a database. The Web Ontology Language
OWL 2 is a language for describing ontology information for the Semantic Web. As such it consists of a list of
reserved words and grammatical rules for defining many parts of ontology knowledge. Based on this language
specification this paper examines the possibility of storing information in a relational database for the description of
domain ontology information. By creating a database structure based on OWL2 it is feasible to obtain an approach to
storing information about the domain ontology in an utilizable way, by using its descriptive abilities. Nowadays
multiple approaches to storing ontology information and OWL in databases exist; most of them are based on storing
RDF data or provide persistence for specific OWL software libraries. The examination of the existing approaches
provided in this paper, shows how they differ from the goal of obtaining a general, more easily usable and less
software library specific database for domain ontology centric information. This paper describes a version of a simple
relational database capable of holding and providing ontology knowledge on demand, which can be implemented on a
database management system of choice.

Keywords: ontology, OWL2, relational database.

I INTRODUCTION

Ontology knowledge is a powerful tool to share,
describe and classify information about a given
domain. The ontology describes concepts important to
a domain. It does it by naming classes, individuals and
relations and describing how these ontology elements
interact with each other. By using reasoning on this
information, new relationships between concepts and
individuals can emerge, and individuals can be
classified by reasoning about their attributes. The
ontology knowledge can be provided in many
different forms and using many different languages or
notations to describe the information. In its most basic
form, ontology knowledge is stored in a file on a
computer. In order to use the ontology more easily, it
would be desirable to access it with the same ease as a
database. There are many approaches to storing
ontology or similar information in a database. Some
databases are structured around the information it
contains and how the information is used; other
approaches store the ontology in its most basic form in
RDF triplets, and still other methods include storing
API specific data structures in a database for
persistence of these variable objects. This paper shows
that having a natural and common structured relational

database for storing ontology information can be
useful for many applications. A general and common
database is accessible to many different software
applications or agents and requires only the
understanding of the database structure by these
agents. This makes it possible for the agents or
software applications to be developed separately
instead of requiring them to use the same API or be
written in the same programming language. In order to
store ontology knowledge, it is necessary to
understand the kind of information stored in modern
ontology modelling approaches.

II ONTOLOGY KNOWLEDGE

At its core any ontology describes concepts,
individuals and properties and uses structures in order
to convey information about elements of the domain.
Ontology information can be described using many
different notations and approaches. In order to be able
to use the most common and full approach, the OWL
2 standard will be used as an ideal. OWL 2 is the web
ontology language version 2 for the Semantic Web
with formally defined meaning [1]. It provides many
useful keywords to frame and describe knowledge.
Using these keywords and structures makes it possible

Henrihs Gorskis, et al./ Environment. Technology. Resources, (2015), Volume III, 71-75

72

to describe a doming ontology and the knowledge
contained in it. First it provides a way to assert the
association of certain pieces of information to classes,
individuals or properties. This is done using the
“Declaration” operator followed by “Named
Individual”, “Class”, “Object Property”, “Data
Property” or “Data type” and the name of the entity
being associated with one of these types. Next, the
operator “Class Assertion” is used to classify an
individual, by stating the individual’s name and the
class it belongs to. The operators “Sub Class Of” and
“Sub Object Property Of” are used to create a
hierarchy of classes and properties to form taxonomy.
Ontology building requires the expert to follow the
rules of how an ontology is structured. In order to
create a correct taxonomy, any higher level classes
must be more abstract than their lower level classes.
Individuals belonging to a class must be the most
distinct and unique element of the ontology. Further
OWL 2 provides a way to define expressly equal or
distinct classes and individuals using the operators
“Equivalent Classes”, “Disjoint Classes”, “Different
Individuals” and “Same Individual”. On the lower
level individuals can be described by using their
relationship with other individuals. This is done using
the “Object Property Assertion” operator and stating
the name of the object property and the second
individual in this relationship. The operator “Negative
Object Property Assertion” can be used to express a
distinct lack of a specific relationship between two
individuals. For implying a class to members of a
relationship, the operators “Object Property Domain”
and “Object Property Range” are used. By defining
these attributes of the object property it can be
reasoned that any individual with this property is of
the specified class. OWL 2 has many more operators
for defining ontology knowledge. There are very
similar operators for defining data properties between
individuals and data types, for example “Data
Property Assertion” and “Negative Data Property
Assertion”. Other operators are used for defining
complex classes. The operators “Object Intersection
Of”, “Object Union Of” and “Object Complement Of”
are used to define unnamed classes which arise from
the interaction of other classes. A whole array of
operators is used in order to define the specific
attributes of a property; these include: “Symmetric
Object Property”,” Asymmetric Object Property” ,”
Reflexive Object Property”, “Irreflexive Object
Property”, “Functional Object Property” , “Inverse
Functional Object Property” and “Transitive Object
Property”.

All the above and other operators are used to
meticulously define every single detail regarding the
knowledge contained in the ontology about each of the
important domain concepts. Using the logic associated
with these operators even more information about the
concepts can be derived from the specifically
expressed definitions. However, not every application

using ontology knowledge is required to know every
detail about the domain, and not every agent will use
reasoning on the ontology. Some software agents are
completely content using ontology concepts simply as
a dictionary. This makes it reasonable to store the
ontology separately from the software applications
which end up using it.

III EXISTING APPROACHES

There already exist several approaches to storing
and recalling ontology information. Protégé is a very
popular tool for creating ontology models. However, it
does not provide a solution for accessing the ontology
externally. It mainly provides the means of saving the
ontology in a file or source so that another program
can use the ontology file. Historically, in previous
versions of the software many attempts have been
made to create a solution for accessing and storing
ontology models created in Protégé in a database [2] -
[4].

Another popular tool for working with ontology is
Apache Jena. It is a programming library for JAVA.
Besides many other functions it offers two ways of
storing ontology data in databases. Jena comes
packaged with server software called “Fuseki”. Fuseki
is a SPARQL server. It stores ontology information in
its own internal data structure and provides access to
the data by sending SPARQL queries to it. The second
solution Jena offers is called TDB (), which is a native
high performance triple store [5]. This approach
creates a triplet-based database table in a database of
the user’s chaise. Apache Jena does provide means to
work with ontology structures, however, underneath it
relies mostly on RDF data, with the ontology being
higher level abstraction of it.

It is worth mentioning another software tool for
ontology persistence called OWLDB [6]. OWLDB is
a database backend for the OWL API. It provides
persistence for OWL API data structures. This means
that by using this tool objects created by the OWL
API can be stored and recalled from a database. This,
however, means that only application written by using
both these tools can use this function. The reason for
creating this backend, as stated by the authors, was to
make the use of ontology information simpler, based
directly on OWL and not reliant on previous RDF
structures. The approach presented in this paper is in
agreement with this sentiment. In order to work with
the capabilities of the ontology itself it is not
necessary to implement a backwards compatibility
with pre-existing approaches. Unfortunately, this
project is not being continued anymore.

There also exist many different database types, all
of which have their own advantages [7]. The reason a
classical relational database was chosen over more
specialized ones, was to make the resulting database
more accessible to a wider variety of possible uses and
software applications.

Henrihs Gorskis, et al./ Environment. Technology. Resources, (2015), Volume III, 71-75

73

IV OWL 2 BASED DATABASE

This paper proposes a database structure based
directly on OWL 2 and uses simple relations to
describe ontology knowledge. At the centre of the
proposed database architecture a main table is located
which holds every element in the ontology (Fig. 1). In
this context an element is any piece of information
which describes some idea in the ontology. Without
additional information such an element can potentially
be a class, individual, property, literal, data type and
so on. Additionally to the main table many other
tables exist, each named after operators in the OWL2
specification. The main table shall hold a unique
identifier, the elements name and a list of true or false
Boolean variables to describe the element further. The
unique identifier will be used in other tables to
reference the unique element to provide additional
information to it or to use it for the description of
other elements of the ontology. This allows the
database to reuse the named individual as many times
as needed. The list of true or false operators provides
hints to the type of element in order to make it easier
to find additional information about the element. For
example, if the element is hinted to be an individual or
a class it is reasonable to search the “class assertion”
table for more information about the element as to
which classes the element belongs to, or which
elements are individuals of this class element,
depending on the type of the element. Having a list of
hints requires it to be updated in addition when new
entries are being made into other tables. However, at
the same time, the list of hints simplifies searching for
additional information immensely. Without this list of
hints, it would be necessary to search the entire
database and every table in it to obtain the full picture
about every element. Additionally the entity table
holds a reference to a prefix entry in the prefix table.
By separating prefixes from the entity they can be
reused. If every entity in the ontology has the same

prefix, there will be only one prefix in the prefix table

used by every entity. Finally, the entity holds a
reference to an annotation in case it exists. The
annotation provides additional information to a human
user. Every other table in the database references one
or more entities. For some tables the order of
referencing entities is important, for other it is not. For
example, the table “Sub Class Of” contains
information about the hierarchy of classes. The
column “Sub ID” holds references to the class which
is the sub class in the hierarchy, while the column
“Sup ID” holds the references to the class above it. So
the order is important, and the naming of the columns
reflects this fact. In contrast, the table “Equivalent
Classes” has the columns “C1 ID” and “C2 ID”. The
order of the references is not important since the table
describes equivalency. This must be taken into
account during searches on the tables. If, for example,
one wishes to find the equivalent classes to an entity,
one must search for the entity’s identifier in both
columns, for it can have been placed in the first as
well as in the second position during the creation of
the ontology. Some tables reference many more
entities. The table “Data Property Assertion” holds
references to the entity of type individual, which has
been given this attribute, the reference to the entity
which describes the data property, the reference to a
data type entity and the entity representing the data.

Some possible tables have been omitted from this
database structure since the data they would have
contained are more useful and tied directly to an
entity. Besides the class, individual and other
assertions being represented directly in the entity
table, assertions about object property characteristics
have also been added directly to the “Object property”
table (Fig. 2). This table references a base entity
representing this object property. In addition it can
reference entities representing classes, to provide
information about the domain and range of this object
property. All of the possible characteristics of an

Fig. 2. Core tables

Fig. 1. Property tables

Henrihs Gorskis, et al./ Environment. Technology. Resources, (2015), Volume III, 71-75

74

object property are provided as Boolean variables in
the table.

All the aforementioned tables provided pieces of
information about an entity in a disconnected, but self-
describing way. However, there are tables which hold
more complex information and require all pieces of it
to be obtained, before a conclusion can be reached.
For example, the table “Object Intersection Of” (Fig.
3) provides parts of a description of a complex class.
A complex class arises from the interaction of
multiple other classes. In the case of intersection, a
complex class is created, when the combination of
other classes creates a new conceptual class. Since an
unspecified number of classes can be involved in this
interaction, a static table containing all required
references cannot be created. Therefore the table
“Object Intersection Of” holds only one reference to a
participating class at a time. The reference to the base
class is a reference to an entity describing the complex
class itself, and the column “Intersecting” holds the
reference to one of the intersecting classes. This
means, all table entries concerning the complex class
(having the same base class id) must be obtained,
before it is known which classes are involved in the
intersection. The same rule applies to all tables
describing complex classes.

Finally, the database also holds a table capable of
describing various datatypes for data properties (Fig.
4). Datatypes behave like classes with the difference
that they do not have individuals, but instead govern
literal data. Literals, datatypes and the data themselves
are also entities in this database. Similar to complex
object classes, complex data types also require
multiple entries into tables. Just like the “Object

Intersection Of” database table, the “Data Intersection
Of” table provides information about all data types
whose intersection form a new complex data type.

Access to the knowledge in the database is very
simple. In the case, when a user or software agent is
looking for a specific concept, the main entity table is
searched for it by name. There can be two entities
with the same name in the table. In such a case the
related prefix can be consulted. If a prefix was
specified within the search parameters, the unique
entity can be found. Once the entity is found, it can be
provided to the user. Some systems may be satisfied at
this stage with the obtained information. Other
systems may choose to obtain further information
about the found entity. Based on the entity’s
characteristics further tables can be polled for
additional information based on the identification of
the entity. In most cases the result of searching other
tables will be a list of identifications referencing other
related entities. Again, depending on the nature of the
obtained information some systems may choose what
connected information must be researched further. To
do this, the main table is searched again based on the
identifications and other entities and their name and
characteristics are obtained. This process is repeated
until the user or system has obtained all the required
information about the original and related entities.

This database structure can be implemented in any
standard database system. For example, the creation
script of the main entity table for MYSQL looks as
follows:

Fig. 3. Complex class tables

Fig. 4. Datatype tables

Henrihs Gorskis, et al./ Environment. Technology. Resources, (2015), Volume III, 71-75

75

DROP TABLE IF EXISTS
'owl2db'.'entities' ;

CREATE TABLE IF NOT EXISTS
'owl2db'.'entities' (

 'Id' INT(11) NOT NULL
AUTO_INCREMENT ,

 'Prefix_fk' INT(11) NOT NULL,
 'Name' CHAR (50),
 'Is_a_Individual' Boolean NOT

NULL,
 'Is_a_Class' Boolean NOT NULL,
 'Is_a_Object_Property' Boolean NOT

NULL,
 'Is_a_Data_Property' Boolean NOT

NULL,
 'Is_a_Data_type' Boolean NOT NULL,
 'Is_data' Boolean NOT NULL,
 'Annotation_fk' INT(11) NOT NULL,
 PRIMARY KEY ('Id'),
 CONSTRAINT FOREIGN KEY

('Prefix_fk') REFERENCES
'prefixes' ('Id') ON DELETE
CASCADE ON UPDATE CASCADE,

 CONSTRAINT FOREIGN KEY
('Annotation_fk') REFERENCES
'annotations' ('Id') ON DELETE
CASCADE ON UPDATE CASCADE

)
ENGINE = InnoDB
AUTO_INCREMENT = 1;

V CONCLUSION

This paper described a novel approach to storing
specifically ontologies based on OWL 2 in a simple
and directly accessible database. Since the structure
was based on the OWL 2 language, its capabilities for
defining and describing ontology knowledge must be
comparable. However, there are some potential
downsides resulted from using such a database
structure. The main entity table can become very large
in size. This can slow down access to the ontology
knowledge since every other quarry is using this table
to determine the name and characteristics of an entity
based on its identifier. This is amplified by storing not
only named, but also unnamed entities in this table.
Every complex class which does not necessarily have
been given a name must still have an entity object in
order to define every attribute of the complex class.
Existing datatypes like “xsd:integer” also must have
entity object in order to maintain the integrity and
consistency of the database structure. All these factors
contribute to a very large list of entities.

The proposed database does not guarantee or verify
the reasonability of the knowledge described in it.
There is no mechanism to prevent any entity from
being a class, individual and property and other at the
same time. It is the ontology expert’s responsibility
for the ontology knowledge to make sense. However,
in some cases it can be of use to have elastic and

multi-purpose element of the ontology. A concept
being several things at the same time is not
automatically a logical fallacy, as long as the resulting
ontology is usable for its stated purpose. Another
downside to storing ontology knowledge in a database
is the lack of a reasoning mechanics. Any such
functionality must be provided by an additional
software solution connecting to the database,
obtaining its contents and adding any new conclusions
to the database. However, some basic reasoning
functionality like an automatic classification of
entities can be added directly to the database using
triggers or scripting languages. This is dependent on
the database management software capability.

At this point it is unclear how this database will or
should handle imports from other ontologies. The
prefix table provides some functionality to describe
the origin of an entity. If an entity has a prefix from an
outside source, further quarrying to other knowledge
sources may be required.

Because of the large number of tables, obtaining all
information can be difficult. At this point, knowledge
obtaining must be performed using a dialog approach,
which includes obtaining information piece by piece.
This has positive as well as negative aspects to it. On
the one hand, this allows the user of the database to
obtain only those pieces of information which are
important. By having a dialog, the user has a choice at
every step. On the other hand, as a negative aspect,
this means that in cases where all the related
information has to be obtained, the process is slowed
down immensely. As future work, an approach to
obtaining the information more easily and preferably
handled on the server side can be researched as well as
an implementation of a quarrying language like
SPARQL.

VI REFERENCES
[1] P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-Schneider and S.

Rudolph, OWL 2 web ontology language primer. W3C
recommendation. 2009 [Online]. Available:
http://www.w3.org/TR/owl2-primer/ [Accessed March 15,
2015]

[2] T. Redmond, “An Open Source Database Backend for the
OWL API and Protege 4”. In OWLED, Vol. 614, 2010.

[3] M. Horridge and S. Bechhofer, “The owl api: A java api for
owl ontologies”. Semantic Web, 2(1), 11-21, 2011.

[4] P. Cudré-Mauroux, I. Enchev, S. Fundatureanu, P. Groth, A.
Haque, A. Harth and M. Wylot, “NoSQL databases for RDF:
an empirical evaluation”, in The Semantic Web–ISWC ,
Springer Berlin Heidelberg, 2013, pp. 310-325.

[5] M. Voigt, A. Mitschick and J. Schulz, “Yet Another Triple
Store Benchmark? Practical Experiences with Real-World
Data”, in SDA 2012, September, pp. 85-94.

[6] J. Henss, J.Kleb, S. Grimm and J.Bock, A Database Backend
for OWL. 5th Int. Workshop on OWL: Experiences and
Directions (OWLED 2009), Chantilly, Virginia, USA,October
2009.

[7] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y.Chen and D.
Wilkins, (2010, April). A comparison of a graph database and
a relational database: a data provenance perspective. In
Proceedings of the 48th Annual Southeast Regional
Conference , p. 42. ACM.

