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Abstract. Artificial neural networks (ANN) are well known for their good classification abilities. Recent advances in 
deep learning imposed second ANN renaissance. But neural networks possesses some problems like choosing hyper 
parameters such as neuron layers count and sizes which can greatly influence classification rate. Thus pruning 
techniques were developed that can reduce network sizes, increase its generalization abilities and overcome 
overfitting. Pruning approaches, in contrast to growing neural networks approach, assume that sufficiently large 
ANN is already trained and can be simplified with acceptable classification accuracy loss.  

Current paper compares nodes vs weights pruning algorithms and gives experimental results for pruned networks 
accuracy rates versus their non-pruned counterparts. We conclude that nodes pruning is more preferable solution, 
with some sidenotes. 
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I INTRODUCTION 

Artificial neural networks has been successfully 
applied in many different areas to solve problems of 
classification and regression. ANN's, specifically 
multi-layer feed-forward artificial neural networks 
trained using error back-propagation give good results 
and recent advances in deep learning proved to give 
unprecedented classification accuracy [1]-[2]. Main 
problem with ANN's traiing is choosing hyper-
parameters which can severely influence model 
performance. Choosing architecture with insufficient 
amount of neurons can give unsatisfying classification 
rates, while choosing too much neurons will badly 
influence training time and will cause overfitting. To 
overcome such problems two approaches exist: 
growing neural networks [3][4] and training 
excessively large network with subsequent pruning. In 
current paper we utilize second approach to overcome 
overfitting of trained ANN's, thus rise its 
generalization abilities as well as prepare previously 
trained artificial neural networks for rules extraction. 
We provide results of experiments with both nodes 
and weights pruning approaches. 

Current paper is structured as follows: section two 
gives overview of pruning methods, section three 
describes used algorithm, section four presents results 
of experiments and sections five and six hold 
discussion and conclusion. 

 

II PRUNING METHODS OVERVIEW 

Exist different approaches to ANN prunning. Both 
neurons themselves (thus all incomming and outgoing 
weights) and specific weights can be prunned. Paper 
[5] provides overview, we briefly present main ideas 
mentioned there along with other methods not listed in 
the source paper. We can divide all pruning 
algorithms into two main categories nodes/weights 
removal based on sensitivity analysis and penalty term 
based methods that utilize penalty term to remove 
'unused' / least important weights. Some algorithms 
combine both approaches, while some cannot be 
easily added to one or the other family of methods. 
Sensitivity analysis relies on calculation of influence 
of specific node or weight. 

 Sensitivity analysis based methods 

Sensitivity method from [6] by Mozer and 
Smolensy calculates error with unit removed and 
without it being removed, thus deleting least important 
units. Instead of calculating error directly they use 
derivative calculated during error back-propagation to 
approximate it. Segee and Carter in [7] have found 
that small variance in weights incoming into neuron is 
signaling that subject neuron can be safely removed.  

Karnin in [8] describes method for weights pruning, 
which does not requires specific sensitivity calculation 
phase. All necessary data about weights updates are 
stored during training. This makes this approach 
unusable in case one wants to prune already trained 
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ANN. Nevertheless such approach is perfectly usable 
in case one have control over training of ANN. The 
main idea is sensitivity analysis of weights and their 
removal if they have too small sensitivity. Here is the  

 
      (1) 

 
 

Where wf is specific weight value, 0 is its value 
after its pruning, E(wf) is error with given weight 
enabled and E(0) is error when this weight is pruned. 
Finally Sij is sensitivity of weight between nodes i,j. 
Instead of computing sensitivity value directly (which 
would lead to sensitivity estimation phase) authors 
propose to estimate it using sum of all changes of 
weight during training: 

 
                                 (2) 

 
 
Rudy Setiono [9] Describes rather simple pruning 

algorithm which uses simple heuristics to find weights 
to be pruned. It assumes that one have ANN with 
single hidden layer (although approach can be 
generalized to multiple hidden layers), And afterwards 
removes input-hidden and hidden-output weights if 
their values are not satisfying specific constant. 
Actually there are two constants used, both of them 
should be set-up manually. 

Rudy Setiono as well described rules extraction 
algorithm [10] called N2FPA which uses simple 
estimations of effect of removal of neurons in the 
network. Neurons are removed one by one. In case 
error worses significantly pruning stops. This is the 
method which was used and slightly modified in 
current paper.  

Le Cun et.al in [11] describe method call Optimal 
Brain Damage (OBD) which measures “saliency” of a 
weight by estimating second derivative of the error 
with respect to the weight. They made couple of 
assumptions after which compute such derivatives 
during modified error back-propagation. One 
drawback of such method is necessity of storage of 
Hessian matrix. After one weight is pruned, retraining 
is done to find another weight to prune. 

Optimal Brain Surgery from [12] (OBS) goes one 
step further in comparison to OBD, it utilizes inverse 
Hessian matrix to calculate optimal weight to be 
deleted, but at the same time it solves optimization 

problem which as result gives remaining weights 
updates necessary to lower network error. Such 
approach allows simultaneous update of all remaining 
weights thus retraining is not required. OBS is one of 
the best methods for pruning. As well as OBD it 
should hold Hessian matrix thus requires additional 
memory. 

 Penalty based methods 

Penalty term methods are utilizing weight decay / 
penalty term in one way or another to force neural 
network during its training get rid of unnecessary 
weights. 

Chauvin [13] uses cost function with specific term 
which poses average energy expended by weights, as 
well there is a modification with additional magnitude 
of weights term which penalizes large weights and 
large amount of weights. 

Weigend et. Al [14]-[16] minimizing specific cost 
function with additional term penalizing network 
complexity as a function of the weights magnitudes 
relative to the defined constant w0. Choosing such 
constant should be done via trials/errors.  

 Ji et.al [17] propose another penalty term based 
pruning approach based on modified error function 
which tries to minimize number of hidden nodes and 
weights magnitudes. The limitation of proposed 
method is that it assumes single hidden layer ANN 
with one input and out linear output node. Method 
assumes retraining after each removed weight. 

 Weight decay methods 

Plaut et. Al [18] proposes simple cost function 
which decays weights. Cost function specifics tends to 
fact that algorithm favors nodes with lot of small 
weights in contrast to node with single large 
connection. Nowlan and Hinton [19] describe more 
complex cost function with penalty term which 
models the probability distributions of weights as 
mixture of Gaussians. 

 Interactive pruning 

Sietsma and Dow [19] describe interactive method 
in which designer inspects network and marks nodes 
to be pruned. Algorithm provides several heuristics to 
determine candidates for removal. Authors have 
shown on training problems that their method is 
capable of finding relatively small networks with good 
accuracy in comparison to large trained networks 
which were not able to find solution. 
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TABLE I 

ERROR RATES WITH STANDARD DEVIATIONS. MEAN PRUNED NODES/WEIGHTS COUNTS. 

  

 Auto-pruning methods 

Next discussed approach is auto-pruning method 
called lprune [20] by Lutz Prechelt. It proposes to 
prune at each step all weights not satisfying specific 
formula controlled by parameter lambda. Experiments 
showed that this parameter should be adaptive, 
algorithm to support dynamic adjustment is proposed. 
According to author proposed methods overcomes 
OBD and OBS in terms of accuracy and simplicity of 
pruned ANN 

Another auto-pruning method [21] by William 
Finoff et. al utilizes modified cost function, does not 
requires full training of ANN and uses dynamic 
adjustment of penalty term. Similar to OBS this 
method performs dynamic topology adjustments. 

 Other methods 

Kruchke [22] describes Local Bottlenecks method 
in which neurons “compete” with each other to 
survive. Magnitudes of vectors determine degree to 
which neuron participates in modeling target function, 
this is treated as neuron gain. In case gain is zero, 
neuron is not participating in classification task and 
can be removed. In case two neurons have parallel or 
anti-parallel weights vectors they are redundant and 
can be removed as well. Method utilizes specific 
parameter which should be tuned carefully. 

Same author proposes another method called 
Distributed Bottlenecks [22][23] which puts 
constraints on weights rather than deletes them. This 
server as sort of dimensionality reduction. Such 

approach makes weight vectors that are farther apart 
than average to become more farther from each other 
and vectors that are closer than average to become 
more closer. Again method uses special constant 
which should be chosen manually. 

III PROPOSED ALGORITHM 

We utilized algorithm described by Rudy Setiono in 
[10] (part of N2FPA rules extraction method.) In 
essence we are using nodes/weights pruning. We 
operate on trained ANN, on each pruning iteration we 
try to determine neuron or weight which needs to be 
removed. For all weights or neurons in input and 
hidden layers we calculate classification error for 
network operating without them. (This essentially 
means we are setting activations of pruned neurons to 
zero, or nullifying weights.) When neuron/weight, 
which upon removal gives network with smallest cost 
function is found it is removed. In our case this is 
neuron/weight which after removal gives network 
with smallest error classification rate. Afterwards 
network is retrained. If accuracy drops, remained the 
same or have risen over a small amount (we used 
tolerance equal to 2.5% - i.e. we are ok with error 
growth for this amount, then neuron/weight is really 
pruned. If error rises significantly candidate 
neuron/weight is left intact and new search for pruning 
candidate is initiated. In case error rises we are 
Retraining gives chances to get simpler network with 
high generalization and good classification rates, 
which can be observed looking into table 1. 

 
MLP train 

avg. 
(std.dev) 

MLP test 
avg.. 

(std.dev 

Pruned 
Weights 

train avg.. 
(std.dev) 

Pruned 
Weights test 

avg.. 
(std.dev) 

Pruned 
Nodes train 

avg.. 
(std.dev) 

Pruned 
Nodes test 

avg.. 
(std.dev) 

Pruned Weights (std.dev)  

Pruned Counts (std.dev) 

Haberman (10-fold X-
validation) 

25.99% 

(0.0098) 
26.78% 

(0.0439) 
24.39% 

(0.0102) 
24.91% 

(0.0550) 
24.98% 

(0.0101) 
26.17% 

(0.0371) 
54.9 (42.0) 

23.8 (10.7) 

Ionosphere (10-fold 
X-validation) 

10.83% 

(0.0013) 
10.83% 

(0.0115) 
4.21% 

(0.0117) 
10.25% 

(0.0346) 
4.55% 

(0.0116) 
9.22% 

(0.0350) 
34.1 (26.8) 

34.3 (16.0) 

Monks-1 (train/test) 
21.51% 

(0.0158) 
32.74% 

(0.0138) 
0.83% 

(0.0268) 
1.81% 

(0.0566) 
6.83% 

(0.0718) 
13.22% 

(0.1201) 
45.9 (17.3) 

22.4 (16.3) 

Monks-2 (train/test) 
38.46% 

(0.0194) 
36.04% 

(0.0167) 
12.47% 

(0.1795) 
12.21% 

(0.1759) 
11.26% 

(0.1751) 
10.25% 
(0.1597) 

16.8 (11.8) 

20.1 (12.7) 

Monks-3 (train/test) 
6.56% 

(0.0) 
2.88% 

(0.0022) 

5.16% 

(0.0182) 

3.45% 

(0.0108) 

3.33% 

(0.0068) 

5.76% 

(0.0075) 

32.4 (28.1) 

29.3 (9.1) 

Parkinsons (10-fold X-
validation) 

24.58% 

(0.0023) 
24.61% 

(0.0190) 
14.83% 

(0.0307) 
16.38% 

(0.0581) 
14.30% 

(0.0154) 
15.57% 
(0.0671) 

10.5 (21.3) 

8.3 (18.6) 

Pima (10-fold X-
validation) 

23.93% 

(0.0083) 
24.56% 

(0.0436) 
21.64% 

(0.0079) 
23.74% 

(0.0398) 
22.12% 

(0.0055) 
23.05% 
(0.0322) 

56.0 (34.3) 

22.7 (3.3) 

WDBC (10-fold X-
validation) 

4.16% 

(0.0033) 
4.33% 

(0.0251) 
1.83% 

(0.0026) 
2.63% 

(0.0238) 
1.77% 

(0.0028) 
2.93% 

(0.0218) 
23.3 (9.2) 

18.5 (11.0) 

WPBC (10-fold X-
validation) 

0% 

(0.0) 
0% 
(0.0) 

0% 

(0.0000) 
0.17% 

(0.0091) 
0% 

(0.0000) 
0% 

(0.0000) 
153.6 (140.6) 

50.0 (0.0) 
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Fig. 1. Classification error. 

This algorithm was described in our previous work 
[24]. Although in current papers we used a slightly 
modified version with two main changes. First of all 
in new version we have pruned not only hidden 
neurons but input layer as well – this basically worked 
as a feature selection. And secondly when algorithm 
encounters rise in error it saves ANN previous state, 
thus in case of several consecutive trials and failures 
to retrain network and get better accuracy (or at least 
not too bad – according to error tolerance) algorithm 
restores last known good ANN state (before 
significant rise of the error). 

Below you can find pseudo code of weights pruning 
algorithm (with slight modifications in regards to 
algorithm published in [24]): 
 
Inputs: 
 

maxIter –     determines maximum count of 
prunning iterations 
 
maxPrunedNodes – maximum amount of nodes to  
be pruned 
 
errorRiseTol -  determines acceptable error 
rise 
 
maxFallbacks -  in case neurons are pruned 
and then reverted – how many times before we 
quit? 
 
Program: 
 
iter = 1 
while(iter<maxIter || 
prunedWeights<maxPrunedWeights) 
 for all not pruned weights in all layers  
  if (lastWeightInLayer()) continue; 
  removeWeight(n) 
  cost = testNetwork() 
  if (cost > largestKnownCost) 
   largestKnownCost = cost 
   indexOfPrunedWeight = 
getIndexOfPrunedWeight  
   prunedWeights = prunedWeights + 1 
  end 
 end 
 
  S = saveNetworkState()  
 retrainNetwork() 
 
 classError = testNetwork() 
  errRatio = classError/smallestClassError 
 if (errRatio > 1 + errorRiseTol) 
  revert pruned weight 
  fallbacksCounter = fallbacksCounter + 1 
    prunedNodes = prunedNodes - 1 
 else 
    ///leave pruned neuron as is 
    fallbacksCounter = 0 
 end 
 if (fallbacksCounter >= maxFallbacks) 
    this = restoreNetworkState(S)  
  break 
 end 
  iter = iter + 1 
end 
 
Here one can notice hyper-parameters listed in the 
beginning, maxIter -controls maximum possible 
amount of pruning iterations, maxPrunedNeurons – 
controls maximum amount of neurons to be pruned. 
We need both parameters as neurons after pruning can 
be restored, thus some iterations will not result in 
network pruning. Although they will leave network 
with weights adjusted during retraining. Apart from 
that two other hyper-parameters are: errorRiseTol – 
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which controls maximum rise of error (we used 
classification error) after removal of neuron which 
will not cause pruned neuron reversal/restore. Thus 
let's say in case error have risen for 5% in case of 
neuron removal in comparison to best/lowest known 
error rate and our parameter is 0.075 we will leave 
network intact, but if it is below 0.05 network will get 
back pruned neuron. Finally maxFallbacks controls 
how many attempts algorithm makes in pruning 
neurons and reverting them back consequently before 
termination. Thus if this parameter is equal to 10, then 
in case of ten subsequent iterations neuron is pruned, 
but then restored due to high rise in error algorithm 
terminates. 
 

ANN itself is trained using Cross-entropy cost 
function equipped with penalty term (weights decay). 
Below is cost function: 

 
 
 (3) 

 

Where k – is the number of patterns, i
pl  = 0 or 1 is the 

target value for pattern xi at ouput unit p, p = 1,2,…,C. 

C is the number of output units/neurons. i
pS  is the 

output of the network at unit p:  
 

           
        (4) 

 
Here to simplify things a bit we provide formulas for 
single hidden layered neural network, but in reality for 
our experiments we utilized two hidden layers. xi is an 
n-dimensional input pattern, i=1,2,…,k. wm is an n-
dimensional vector of weights for the arcs connecting 
the input layer and the m-th hidden unit, m = 1,2,…,h. 
vm is a C-dimensional vector for the weight 
connecting the m-th hidden unit and the output layer. 
The activation function is sigmoid function with 
domain (-1, +1): 
 

             
              (5) 

 
Finally for all our weights we are applying weight 

decay factor 0.0001. This is quite simple approach in 
comparison to other described in theoretical part, but 
still it does the job. Cross-entropy was chosen as it is 
capable of dealing with problems of error derivative 
platoe better than standard round mean square error 
(RMSE) [25]. Apart from this we utilized Stochastic 
Gradient Descent batch training. Batch size was 
chosen to be 20. 

IV EXPERIMENTS 

In our experiments we have utilized three 10-fold 
cross-validation, but for some test-sets like monk's 

train and test data are already provided thus there we 
utilized thirty runs to get averaged results. We decided 
to utilize two hidden layers neural networks so that 
some networks will be able to utilized this to their 
advantage, in case one of the layers is not needed we 
will be able to see this after pruning will be finished – 
such layers should have small amount of intact 
neurons in one of the layers. For our experiments we 
utilized well known UCI [26] data sets: Monks-1, 
Monks-2, Monks-3, Ionosphere, Haberman, Pima 
diabetes, WDBC, WPBC and Parkinsons.  

 

 
Fig. 2.  Counts of pruned weights/nodes 

Some of mentioned problems utilize only 
categorical variables - like monks. In such cases we 
have transformed input data into binary format thus 
instead of 5 inputs we used 17. In other cases the only 
transformation applied was rescaling of data into [-1, 
1] region. Data sets are binary classification problems; 
we utilized two output neurons to represent solution of 
the network. Data sets themselves are pretty small 
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ranging from about 150 to 500 entries. Table 1 holds 
classification accuracy for all data sets. It contains 
average classification rate with standard deviation for 
both train and test cases along with 10 x-validation 
folds or runs for non-pruned and pruned neural 
networks. Last table column holds networks hidden 
layers structures before and after pruning. 
For the pruning algorithm we used 0.025 as an 
errorRiseTol tolerance level, usually around 50 
(depends on total amount of neurons, it should be 
around 60-70% of that) as maxIter iterations. MaxIter 
count should be larger than maximum amount of 
neurons to be pruned (which was always equal to 
neurons count in hidden layers minus 2 – we cannot 
prune all neurons from all layers.) In all cases we 
decided to utilize 2 layer hidden neuron networks 
(with error-backpropagation) trained using cross-
entropy cost (error) function and stochastic gradient 
descent as learning algorithm. All cases were executed 
using 10-fold cross validation except monk’s data 
sets – they already are divided into training and testing 
sets 
 Figure 1 as well as Table 1 present classification 
errors for all 30 experiments across all datasets. One 
can note that all in all weights pruning when run on 
test data is giving classification accuracy almost equal 
to nodes pruning. Single exception is Monks-2 
dataset, where weights pruning perform better. Now 
looking on figure 2 one can observe that counts of 
pruned nodes/weights greatly varies between runs. 
This suggests large amount of local minima. One way 
of dealing with this can be pre-training of ANN using 
DBN.  

All in all training set classification graphs show 
decrease of train set classification error. 

V  DISCUSSION 

As one can notice in many cases acquired ANN 
models are significantly smaller than initial networks. 
Exceptions are wdbc and parkinsons data sets where 
we can see ~50% drop in neurons counts. Both of 
them have rather complex structure thus require 
bigger models (in comparison to other data sets). 
Looking at weights pruning approach – almost always 
networks sizes are at least 70%-80% of the original 
size (with some exceptions). Looking at accuracy rates 
we can say there is a parity between weights and 
nodes pruning. Although in context of rules extraction 
neurons pruning is more preferable approach as it is 
producing smaller networks and it is less time 
consuming (there are much less neurons than weights 
in network). As we already noted algorithm have auto-
stopping criteria allowing it to perform several trials 
before deciding to stop. Used algorithm assumes 
training of neural network with removed 
neuron/weight, while afterwards in case of 
unsatisfactory results removed neuron is returned back 
to the ANN. Diligent reader can note that there exists 

several possibilities in regards to how and which 
neuron should be returned back into neural net. We 
used same neuron, but we have not explored 
possibilities of adding random neuron. As we already 
mentioned in case algorithm fails to get pruned 
network, it restores it’s last state – before it started to 
fail with removal of weight/node. 

Another point to mention is interesting behavior of 
algorithm on Monks-2 dataset observing network 
errors in Figure 1 one can note that in half of all cases 
algorithm was able to get near zero error rate. At the 
same time weights pruning performed much better 
than nodes pruning at Monks-3 testing data set, which 
have 5% noise in training data. 

VI  CONCLUSIONS 

In current paper we presented improved algorithm 
for pruning artificial neural networks via 
nodes/weights pruning along with experimental data 
(UCI classification data sets were used) showing that 
both types of pruning simplify network structure, but 
nodes pruning does better job. While weights pruning 
can give better results at cost of more complex ANN 
structure and higher computational time. Of course if 
some data set have complex structure – in such cases 
both approaches will end up with only slightly pruned 
neural network – but with better generalization value. 
When algorithm was applied to UCI datasets in many 
cases it produced much simpler ANN models with 
only a few neurons/or couple of dozens of weights 
while having slightly worse or in some cases better 
classification accuracy rates. Such 'simpler' models are 
faster to execute and are better candidates for 
knowledge extraction. Further research directions are 
exploration of other techniques for returning neuron 
back after retraining phase. Another area of future 
research can be dealing with local minima which 
causes early stopping during pruning. It is interesting 
to see causes of such early stopping – are they caused 
entirely by poorly trained ANN and can they be 
overcome or not. 
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