

Environment. Technology. Resources, Rezekne, Latvia

Proceedings of the 10th International Scientific and Practical Conference. Volume III, 22-28

ISSN 1691-5402
© Rezekne Higher Education Institution (Rēzeknes Augstskola), Rezekne 2015

DOI: http://dx.doi.org/10.17770/etr2015vol3.166

Neurons vs Weights Pruning in Artificial
Neural Networks

Andrey Bondarenko, Arkady Borisov, Ludmila Aleksejeva

Riga Technical University, Faculty of Computer Science and Information Technology,
Decision Support Systems Group.

 Address: Mezha str. ¼ - 463, Riga, LV-1048, Latvia

Abstract. Artificial neural networks (ANN) are well known for their good classification abilities. Recent advances in
deep learning imposed second ANN renaissance. But neural networks possesses some problems like choosing hyper
parameters such as neuron layers count and sizes which can greatly influence classification rate. Thus pruning
techniques were developed that can reduce network sizes, increase its generalization abilities and overcome
overfitting. Pruning approaches, in contrast to growing neural networks approach, assume that sufficiently large
ANN is already trained and can be simplified with acceptable classification accuracy loss.

Current paper compares nodes vs weights pruning algorithms and gives experimental results for pruned networks
accuracy rates versus their non-pruned counterparts. We conclude that nodes pruning is more preferable solution,
with some sidenotes.

Keywords: artificial neural networks, generalization, overfitting, pruning.

I INTRODUCTION

Artificial neural networks has been successfully
applied in many different areas to solve problems of
classification and regression. ANN's, specifically
multi-layer feed-forward artificial neural networks
trained using error back-propagation give good results
and recent advances in deep learning proved to give
unprecedented classification accuracy [1]-[2]. Main
problem with ANN's traiing is choosing hyper-
parameters which can severely influence model
performance. Choosing architecture with insufficient
amount of neurons can give unsatisfying classification
rates, while choosing too much neurons will badly
influence training time and will cause overfitting. To
overcome such problems two approaches exist:
growing neural networks [3][4] and training
excessively large network with subsequent pruning. In
current paper we utilize second approach to overcome
overfitting of trained ANN's, thus rise its
generalization abilities as well as prepare previously
trained artificial neural networks for rules extraction.
We provide results of experiments with both nodes
and weights pruning approaches.

Current paper is structured as follows: section two
gives overview of pruning methods, section three
describes used algorithm, section four presents results
of experiments and sections five and six hold
discussion and conclusion.

II PRUNING METHODS OVERVIEW

Exist different approaches to ANN prunning. Both
neurons themselves (thus all incomming and outgoing
weights) and specific weights can be prunned. Paper
[5] provides overview, we briefly present main ideas
mentioned there along with other methods not listed in
the source paper. We can divide all pruning
algorithms into two main categories nodes/weights
removal based on sensitivity analysis and penalty term
based methods that utilize penalty term to remove
'unused' / least important weights. Some algorithms
combine both approaches, while some cannot be
easily added to one or the other family of methods.
Sensitivity analysis relies on calculation of influence
of specific node or weight.

 Sensitivity analysis based methods

Sensitivity method from [6] by Mozer and
Smolensy calculates error with unit removed and
without it being removed, thus deleting least important
units. Instead of calculating error directly they use
derivative calculated during error back-propagation to
approximate it. Segee and Carter in [7] have found
that small variance in weights incoming into neuron is
signaling that subject neuron can be safely removed.

Karnin in [8] describes method for weights pruning,
which does not requires specific sensitivity calculation
phase. All necessary data about weights updates are
stored during training. This makes this approach
unusable in case one wants to prune already trained

Andrey Bondarenko, et al./ Environment. Technology. Resources, (2015), Volume III, 22-28

23

ANN. Nevertheless such approach is perfectly usable
in case one have control over training of ANN. The
main idea is sensitivity analysis of weights and their
removal if they have too small sensitivity. Here is the

 (1)

Where wf is specific weight value, 0 is its value
after its pruning, E(wf) is error with given weight
enabled and E(0) is error when this weight is pruned.
Finally Sij is sensitivity of weight between nodes i,j.
Instead of computing sensitivity value directly (which
would lead to sensitivity estimation phase) authors
propose to estimate it using sum of all changes of
weight during training:

 (2)

Rudy Setiono [9] Describes rather simple pruning

algorithm which uses simple heuristics to find weights
to be pruned. It assumes that one have ANN with
single hidden layer (although approach can be
generalized to multiple hidden layers), And afterwards
removes input-hidden and hidden-output weights if
their values are not satisfying specific constant.
Actually there are two constants used, both of them
should be set-up manually.

Rudy Setiono as well described rules extraction
algorithm [10] called N2FPA which uses simple
estimations of effect of removal of neurons in the
network. Neurons are removed one by one. In case
error worses significantly pruning stops. This is the
method which was used and slightly modified in
current paper.

Le Cun et.al in [11] describe method call Optimal
Brain Damage (OBD) which measures “saliency” of a
weight by estimating second derivative of the error
with respect to the weight. They made couple of
assumptions after which compute such derivatives
during modified error back-propagation. One
drawback of such method is necessity of storage of
Hessian matrix. After one weight is pruned, retraining
is done to find another weight to prune.

Optimal Brain Surgery from [12] (OBS) goes one
step further in comparison to OBD, it utilizes inverse
Hessian matrix to calculate optimal weight to be
deleted, but at the same time it solves optimization

problem which as result gives remaining weights
updates necessary to lower network error. Such
approach allows simultaneous update of all remaining
weights thus retraining is not required. OBS is one of
the best methods for pruning. As well as OBD it
should hold Hessian matrix thus requires additional
memory.

 Penalty based methods

Penalty term methods are utilizing weight decay /
penalty term in one way or another to force neural
network during its training get rid of unnecessary
weights.

Chauvin [13] uses cost function with specific term
which poses average energy expended by weights, as
well there is a modification with additional magnitude
of weights term which penalizes large weights and
large amount of weights.

Weigend et. Al [14]-[16] minimizing specific cost
function with additional term penalizing network
complexity as a function of the weights magnitudes
relative to the defined constant w0. Choosing such
constant should be done via trials/errors.

 Ji et.al [17] propose another penalty term based
pruning approach based on modified error function
which tries to minimize number of hidden nodes and
weights magnitudes. The limitation of proposed
method is that it assumes single hidden layer ANN
with one input and out linear output node. Method
assumes retraining after each removed weight.

 Weight decay methods

Plaut et. Al [18] proposes simple cost function
which decays weights. Cost function specifics tends to
fact that algorithm favors nodes with lot of small
weights in contrast to node with single large
connection. Nowlan and Hinton [19] describe more
complex cost function with penalty term which
models the probability distributions of weights as
mixture of Gaussians.

 Interactive pruning

Sietsma and Dow [19] describe interactive method
in which designer inspects network and marks nodes
to be pruned. Algorithm provides several heuristics to
determine candidates for removal. Authors have
shown on training problems that their method is
capable of finding relatively small networks with good
accuracy in comparison to large trained networks
which were not able to find solution.

f
f

f

ij w
w

EwE
S

0

)0()(

Ŝij=− ∑
n= 0

N− 1
∂ E
∂wij

Δwij(n)
wij

f

wij
f − wij

i

Andrey Bondarenko, et al./ Environment. Technology. Resources, (2015), Volume III, 22-28

24

TABLE I

ERROR RATES WITH STANDARD DEVIATIONS. MEAN PRUNED NODES/WEIGHTS COUNTS.

 Auto-pruning methods

Next discussed approach is auto-pruning method
called lprune [20] by Lutz Prechelt. It proposes to
prune at each step all weights not satisfying specific
formula controlled by parameter lambda. Experiments
showed that this parameter should be adaptive,
algorithm to support dynamic adjustment is proposed.
According to author proposed methods overcomes
OBD and OBS in terms of accuracy and simplicity of
pruned ANN

Another auto-pruning method [21] by William
Finoff et. al utilizes modified cost function, does not
requires full training of ANN and uses dynamic
adjustment of penalty term. Similar to OBS this
method performs dynamic topology adjustments.

 Other methods

Kruchke [22] describes Local Bottlenecks method
in which neurons “compete” with each other to
survive. Magnitudes of vectors determine degree to
which neuron participates in modeling target function,
this is treated as neuron gain. In case gain is zero,
neuron is not participating in classification task and
can be removed. In case two neurons have parallel or
anti-parallel weights vectors they are redundant and
can be removed as well. Method utilizes specific
parameter which should be tuned carefully.

Same author proposes another method called
Distributed Bottlenecks [22][23] which puts
constraints on weights rather than deletes them. This
server as sort of dimensionality reduction. Such

approach makes weight vectors that are farther apart
than average to become more farther from each other
and vectors that are closer than average to become
more closer. Again method uses special constant
which should be chosen manually.

III PROPOSED ALGORITHM

We utilized algorithm described by Rudy Setiono in
[10] (part of N2FPA rules extraction method.) In
essence we are using nodes/weights pruning. We
operate on trained ANN, on each pruning iteration we
try to determine neuron or weight which needs to be
removed. For all weights or neurons in input and
hidden layers we calculate classification error for
network operating without them. (This essentially
means we are setting activations of pruned neurons to
zero, or nullifying weights.) When neuron/weight,
which upon removal gives network with smallest cost
function is found it is removed. In our case this is
neuron/weight which after removal gives network
with smallest error classification rate. Afterwards
network is retrained. If accuracy drops, remained the
same or have risen over a small amount (we used
tolerance equal to 2.5% - i.e. we are ok with error
growth for this amount, then neuron/weight is really
pruned. If error rises significantly candidate
neuron/weight is left intact and new search for pruning
candidate is initiated. In case error rises we are
Retraining gives chances to get simpler network with
high generalization and good classification rates,
which can be observed looking into table 1.

MLP train

avg.
(std.dev)

MLP test
avg..

(std.dev

Pruned
Weights

train avg..
(std.dev)

Pruned
Weights test

avg..
(std.dev)

Pruned
Nodes train

avg..
(std.dev)

Pruned
Nodes test

avg..
(std.dev)

Pruned Weights (std.dev)

Pruned Counts (std.dev)

Haberman (10-fold X-
validation)

25.99%

(0.0098)
26.78%

(0.0439)
24.39%

(0.0102)
24.91%

(0.0550)
24.98%

(0.0101)
26.17%

(0.0371)
54.9 (42.0)

23.8 (10.7)

Ionosphere (10-fold
X-validation)

10.83%

(0.0013)
10.83%

(0.0115)
4.21%

(0.0117)
10.25%

(0.0346)
4.55%

(0.0116)
9.22%

(0.0350)
34.1 (26.8)

34.3 (16.0)

Monks-1 (train/test)
21.51%

(0.0158)
32.74%

(0.0138)
0.83%

(0.0268)
1.81%

(0.0566)
6.83%

(0.0718)
13.22%

(0.1201)
45.9 (17.3)

22.4 (16.3)

Monks-2 (train/test)
38.46%

(0.0194)
36.04%

(0.0167)
12.47%

(0.1795)
12.21%

(0.1759)
11.26%

(0.1751)
10.25%
(0.1597)

16.8 (11.8)

20.1 (12.7)

Monks-3 (train/test)
6.56%

(0.0)
2.88%

(0.0022)

5.16%

(0.0182)

3.45%

(0.0108)

3.33%

(0.0068)

5.76%

(0.0075)

32.4 (28.1)

29.3 (9.1)

Parkinsons (10-fold X-
validation)

24.58%

(0.0023)
24.61%

(0.0190)
14.83%

(0.0307)
16.38%

(0.0581)
14.30%

(0.0154)
15.57%
(0.0671)

10.5 (21.3)

8.3 (18.6)

Pima (10-fold X-
validation)

23.93%

(0.0083)
24.56%

(0.0436)
21.64%

(0.0079)
23.74%

(0.0398)
22.12%

(0.0055)
23.05%
(0.0322)

56.0 (34.3)

22.7 (3.3)

WDBC (10-fold X-
validation)

4.16%

(0.0033)
4.33%

(0.0251)
1.83%

(0.0026)
2.63%

(0.0238)
1.77%

(0.0028)
2.93%

(0.0218)
23.3 (9.2)

18.5 (11.0)

WPBC (10-fold X-
validation)

0%

(0.0)
0%
(0.0)

0%

(0.0000)
0.17%

(0.0091)
0%

(0.0000)
0%

(0.0000)
153.6 (140.6)

50.0 (0.0)

Andrey Bondarenko, et al./ Environment. Technology. Resources, (2015), Volume III, 22-28

25

Fig. 1. Classification error.

This algorithm was described in our previous work
[24]. Although in current papers we used a slightly
modified version with two main changes. First of all
in new version we have pruned not only hidden
neurons but input layer as well – this basically worked
as a feature selection. And secondly when algorithm
encounters rise in error it saves ANN previous state,
thus in case of several consecutive trials and failures
to retrain network and get better accuracy (or at least
not too bad – according to error tolerance) algorithm
restores last known good ANN state (before
significant rise of the error).

Below you can find pseudo code of weights pruning
algorithm (with slight modifications in regards to
algorithm published in [24]):

Inputs:

maxIter – determines maximum count of
prunning iterations

maxPrunedNodes – maximum amount of nodes to
be pruned

errorRiseTol - determines acceptable error
rise

maxFallbacks - in case neurons are pruned
and then reverted – how many times before we
quit?

Program:

iter = 1
while(iter<maxIter ||
prunedWeights<maxPrunedWeights)
 for all not pruned weights in all layers
 if (lastWeightInLayer()) continue;
 removeWeight(n)
 cost = testNetwork()
 if (cost > largestKnownCost)
 largestKnownCost = cost
 indexOfPrunedWeight =
getIndexOfPrunedWeight
 prunedWeights = prunedWeights + 1
 end
 end

 S = saveNetworkState()
 retrainNetwork()

 classError = testNetwork()
 errRatio = classError/smallestClassError
 if (errRatio > 1 + errorRiseTol)
 revert pruned weight
 fallbacksCounter = fallbacksCounter + 1
 prunedNodes = prunedNodes - 1
 else
 ///leave pruned neuron as is
 fallbacksCounter = 0
 end
 if (fallbacksCounter >= maxFallbacks)
 this = restoreNetworkState(S)
 break
 end
 iter = iter + 1
end

Here one can notice hyper-parameters listed in the
beginning, maxIter -controls maximum possible
amount of pruning iterations, maxPrunedNeurons –
controls maximum amount of neurons to be pruned.
We need both parameters as neurons after pruning can
be restored, thus some iterations will not result in
network pruning. Although they will leave network
with weights adjusted during retraining. Apart from
that two other hyper-parameters are: errorRiseTol –

Andrey Bondarenko, et al./ Environment. Technology. Resources, (2015), Volume III, 22-28

26

which controls maximum rise of error (we used
classification error) after removal of neuron which
will not cause pruned neuron reversal/restore. Thus
let's say in case error have risen for 5% in case of
neuron removal in comparison to best/lowest known
error rate and our parameter is 0.075 we will leave
network intact, but if it is below 0.05 network will get
back pruned neuron. Finally maxFallbacks controls
how many attempts algorithm makes in pruning
neurons and reverting them back consequently before
termination. Thus if this parameter is equal to 10, then
in case of ten subsequent iterations neuron is pruned,
but then restored due to high rise in error algorithm
terminates.

ANN itself is trained using Cross-entropy cost
function equipped with penalty term (weights decay).
Below is cost function:

 (3)

Where k – is the number of patterns, i
pl = 0 or 1 is the

target value for pattern xi at ouput unit p, p = 1,2,…,C.

C is the number of output units/neurons. i
pS is the

output of the network at unit p:

 (4)

Here to simplify things a bit we provide formulas for
single hidden layered neural network, but in reality for
our experiments we utilized two hidden layers. xi is an
n-dimensional input pattern, i=1,2,…,k. wm is an n-
dimensional vector of weights for the arcs connecting
the input layer and the m-th hidden unit, m = 1,2,…,h.
vm is a C-dimensional vector for the weight
connecting the m-th hidden unit and the output layer.
The activation function is sigmoid function with
domain (-1, +1):

 (5)

Finally for all our weights we are applying weight

decay factor 0.0001. This is quite simple approach in
comparison to other described in theoretical part, but
still it does the job. Cross-entropy was chosen as it is
capable of dealing with problems of error derivative
platoe better than standard round mean square error
(RMSE) [25]. Apart from this we utilized Stochastic
Gradient Descent batch training. Batch size was
chosen to be 20.

IV EXPERIMENTS

In our experiments we have utilized three 10-fold
cross-validation, but for some test-sets like monk's

train and test data are already provided thus there we
utilized thirty runs to get averaged results. We decided
to utilize two hidden layers neural networks so that
some networks will be able to utilized this to their
advantage, in case one of the layers is not needed we
will be able to see this after pruning will be finished –
such layers should have small amount of intact
neurons in one of the layers. For our experiments we
utilized well known UCI [26] data sets: Monks-1,
Monks-2, Monks-3, Ionosphere, Haberman, Pima
diabetes, WDBC, WPBC and Parkinsons.

Fig. 2. Counts of pruned weights/nodes

Some of mentioned problems utilize only
categorical variables - like monks. In such cases we
have transformed input data into binary format thus
instead of 5 inputs we used 17. In other cases the only
transformation applied was rescaling of data into [-1,
1] region. Data sets are binary classification problems;
we utilized two output neurons to represent solution of
the network. Data sets themselves are pretty small

)log1)(1(log),(
1 1

k

i

C

p

i
p

i
p

i
p

i
p SlSlvwF

m
p

mTi
h

m

i
p vwxS

1

ye
y

1

1
)(

Andrey Bondarenko, et al./ Environment. Technology. Resources, (2015), Volume III, 22-28

27

ranging from about 150 to 500 entries. Table 1 holds
classification accuracy for all data sets. It contains
average classification rate with standard deviation for
both train and test cases along with 10 x-validation
folds or runs for non-pruned and pruned neural
networks. Last table column holds networks hidden
layers structures before and after pruning.
For the pruning algorithm we used 0.025 as an
errorRiseTol tolerance level, usually around 50
(depends on total amount of neurons, it should be
around 60-70% of that) as maxIter iterations. MaxIter
count should be larger than maximum amount of
neurons to be pruned (which was always equal to
neurons count in hidden layers minus 2 – we cannot
prune all neurons from all layers.) In all cases we
decided to utilize 2 layer hidden neuron networks
(with error-backpropagation) trained using cross-
entropy cost (error) function and stochastic gradient
descent as learning algorithm. All cases were executed
using 10-fold cross validation except monk’s data
sets – they already are divided into training and testing
sets
 Figure 1 as well as Table 1 present classification
errors for all 30 experiments across all datasets. One
can note that all in all weights pruning when run on
test data is giving classification accuracy almost equal
to nodes pruning. Single exception is Monks-2
dataset, where weights pruning perform better. Now
looking on figure 2 one can observe that counts of
pruned nodes/weights greatly varies between runs.
This suggests large amount of local minima. One way
of dealing with this can be pre-training of ANN using
DBN.

All in all training set classification graphs show
decrease of train set classification error.

V DISCUSSION

As one can notice in many cases acquired ANN
models are significantly smaller than initial networks.
Exceptions are wdbc and parkinsons data sets where
we can see ~50% drop in neurons counts. Both of
them have rather complex structure thus require
bigger models (in comparison to other data sets).
Looking at weights pruning approach – almost always
networks sizes are at least 70%-80% of the original
size (with some exceptions). Looking at accuracy rates
we can say there is a parity between weights and
nodes pruning. Although in context of rules extraction
neurons pruning is more preferable approach as it is
producing smaller networks and it is less time
consuming (there are much less neurons than weights
in network). As we already noted algorithm have auto-
stopping criteria allowing it to perform several trials
before deciding to stop. Used algorithm assumes
training of neural network with removed
neuron/weight, while afterwards in case of
unsatisfactory results removed neuron is returned back
to the ANN. Diligent reader can note that there exists

several possibilities in regards to how and which
neuron should be returned back into neural net. We
used same neuron, but we have not explored
possibilities of adding random neuron. As we already
mentioned in case algorithm fails to get pruned
network, it restores it’s last state – before it started to
fail with removal of weight/node.

Another point to mention is interesting behavior of
algorithm on Monks-2 dataset observing network
errors in Figure 1 one can note that in half of all cases
algorithm was able to get near zero error rate. At the
same time weights pruning performed much better
than nodes pruning at Monks-3 testing data set, which
have 5% noise in training data.

VI CONCLUSIONS

In current paper we presented improved algorithm
for pruning artificial neural networks via
nodes/weights pruning along with experimental data
(UCI classification data sets were used) showing that
both types of pruning simplify network structure, but
nodes pruning does better job. While weights pruning
can give better results at cost of more complex ANN
structure and higher computational time. Of course if
some data set have complex structure – in such cases
both approaches will end up with only slightly pruned
neural network – but with better generalization value.
When algorithm was applied to UCI datasets in many
cases it produced much simpler ANN models with
only a few neurons/or couple of dozens of weights
while having slightly worse or in some cases better
classification accuracy rates. Such 'simpler' models are
faster to execute and are better candidates for
knowledge extraction. Further research directions are
exploration of other techniques for returning neuron
back after retraining phase. Another area of future
research can be dealing with local minima which
causes early stopping during pruning. It is interesting
to see causes of such early stopping – are they caused
entirely by poorly trained ANN and can they be
overcome or not.

VII REFERENCES
[1] A.-Krizhevsky, I. Sutskever, G. Hinton. “ImageNet

Classification with Deep Convolutional Neural Networks”,
Advances in Neural Information Processing Systems 25 (NIPS
2012), 2012.

[2] G. Hinton, L. Deong, D. Yu, G. Dahl and others, “Deep
Neural Networks for Accoustic Modelling in Speech
Recognition”. IEEE Signal Processing Magazine, November,
2012.

[3] X. Qiang, G. Cheng, Z. Wang, “An Overview of Some
Classical Growing Neural Networks and New Developments”,
IEEE, Education Technology and Computer (ICETC), 2nd
International confernece Vol.3. 2010.

[4] V. Chaudhary, A.K. Ahlawat, R.S. Bhatia, “Growing Neural
Networks using Soft Competitive Learning”. International
Journal of Computer Applications (0975-8887) Volume 21-
No.3, May 2011.

Andrey Bondarenko, et al./ Environment. Technology. Resources, (2015), Volume III, 22-28

28

[5] R. Reed, “Pruning Algorithms – A Survey”, IEEE
Transactions on Neural Networks, Vol.4., No.5., September
1993.

[6] M. C. Mozer and P. Smolensky, "Skeletonization: A Techique
for Trimming the Fat From a Network via Relevance
Assessment," in Advances in Neural Information Processing,
pp. 107-115, (Denver 1988), 1989.

[7] B. E. Segee and M. J. Carter, "Fault Tolerance of Pruned
Multilayer Networks," in Proc. Int. Joint Conf. Neural
Networks, Vol. 2., (Seattle), pp.447-452, 1991.

[8] E. D. Karnin, "A Simple Procedure For Pruning Back-
Propagation Trained Neural Networks", IEEE Trans. Neural
Networks, Vol. 1., No. 2, pp.239-242, 1990.

[9] R. Setiono and H. Liu, "Understanding Neural Networks via
Rule Extraction," IJCAI, 1995.

[10] R. Setiono and W. H. Leow, "Pruned Neural Networks for
Regression" in PRICAI 2000 Topics in Artificial Intelligence,
Lecture Notes in Computer Science Vol. 1886, 2000, pp. 500-
509.

[11] Y. Le Cun, J. S. Denker, and S. A. Solla, "Optimal Brain
Damage," in Advances in Neural Information Processing (2),
D.S. Touretzky Ed. (Denver 1989), 1990, pp. 598-605.

[12] B. Hassibi, D. G. Stork, G. J Wolf, "Optimal Brain Surgery
and General Network Pruning.”

[13] Y. Chauvin, “A Back-Propagation Algorithm With Optimal
Use of Hidden Units” Advances in Neural Information
Processing, (1) D.S. Touretzky ed. (Denver 1998), 1989, pp.
519-526.

[14] A. S. Weigend, D. E. Rumelhart, and B. A. Huberman, "Back-
Propagation, Weight Elimination and Time Series Prediction,"
in Proc. 1990 Connectionist Models Summer School, D.
Touretzky, J Elman, T. Sejnowsky, and G. Hinton, Eds., 1990,
pp. 105-116.

[15] A. S. Weigend, D. E. Rumelhart, and B. A. Huberman,
"Generalization by Weight-Elimination Applied to Currency
Exchange Rate Prediction," in Proc. Int. Joint Conf. Neural
Networks, vol. I, (Seattle), 1991, pp.837-841.

[16] A. S. Weigend, D. E. Rumelhart and B. A. Huberman,
"Generalization by Weight-Elimination With Application to
Forecasting," in Advances in Neural Information Processing
(3) R. Lippmann, J. Moody, and D. Touretzky, Eds., 1991, pp.
875-882.

[17] C. Ji, R. R. Snapp, and D. Psaltis, "Generalizing Smoothness
Constraints From Discreet Samples," Neural Computation,
Vol. 2, No. 2, 1990, pp.188-197.

[18] D. C. Plaut, S. J. Nowlan, and G E. Hinton, “Experiments on
Learning by Back Propagation,” Tech. Rep. CMU-CS-86-126,
Carnegie Mellon Univ., 1986.

[19] Sietsma, and R. J. F. Dow, "Neural Network Pruning – Why
and How" Proc. of the IEEE International Joint Conference
on Neural Netoworks, 1989, pp. 325-333.

[20] L. Prechelt, “Adaptive Parameter Prunning in Neural
Networks,” International Computer Science Institute, March.
1995.

[21] W. Finnoff, F. Hergert, and H. G. Zimmermann, “Improving
Model Selection by Nonconvergent Methods”, Elsiever
Neural Networks, Vol. 6, Issue 6, 1993, pp.771-783.

[22] J. K. Kruschke, “Creating Local and Distributed Bottlenecks
in Hidden Layers of Back-Propagation Networks,” in Proc.
1988 Connectionist Models Summer School, D. Touretzky, G.
E. Hinton, and T. Sejnowsky, Eds., 1988, pp 120-126.

[23] J,. K. Kruschke, “Improving Generalization in Back-
Propagation Networks with Distributed Bottlenecks,” in Proc.
Int. Joint Conf. Neural Networks, Washington DC, Vol. 1,
1989, pp.443-447.

[24] A. Bondarenko, A. Borisov, “Neural Networks Generalization
and Simplification via Prunning”, Scientific Journal 2014 of
Riga Technical University, 2014.

[25] P. Golik, P. Doetsch, and H. Ney, “Cross-Entropy vs. Squared
Error Training: a Theoretical and Experimental Comparison”,
in Interspeech, pp. 1756-1760, Lyon, France, August 2013.

[26] K. Bache, M. Lichman, (2013), UCI Machine Learning
Repository [http://archive.ics.uci.edu/ml], Irvine, CA:
University of California, School of Information and Computer
Science (last accesed Sept 15, 2014).

