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Abstract. Nowadays the possibilities of evolutionary algorithms are widely used in many optimization 

and classification tasks. Evolutionary algorithms are stochastic search methods that try to emulate Darwin’s 

principle of natural evolution. There are (at least) four paradigms in the world of evolutionary algorithms: 

evolutionary programming, evolution strategies, genetic algorithms and genetic programming. This paper 

analyzes present-day approaches of genetic algorithms and genetic programming and examines the possibilities 

of genetic programming that will be used in further research. The paper presents implementation examples that 

show the working principles of evolutionary algorithms.  
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Evolutionary algorithms: an introduction 

Evolutionary algorithms (EA) are population-based meta-heuristic optimization algorithms that 

use biology-inspired mechanisms like mutation, crossover, natural selection, and survival of the 

fittest in order to refine a set of solution candidates iteratively [1].  

All EA have three features in common: 

1. They use a population of potential solutions to the problem that is to be solved. 

2. They rate the quality of these solutions with an objective function, and base the selection of 

surviving solutions on this quality measure. 

3. They have a reproduction stage in which new solutions are constructed inheriting traits from 

current solutions. 

Three basic mechanisms drive natural evolution: reproduction, mutation and selection. These 

mechanisms act on the chromosomes containing the genetic information of the individual (the 

genotype), rather than on the individual (the phenotype). Reproduction is the process in which 

new individuals are introduced into population. During reproduction, recombination or 

crossover occurs, transmitting to the offspring chromosomes that are common of both parent’s 

genetic information. Mutation introduces small changes into the inherited chromosomes. 

Selection is a process guided by the Darwinian principle of survival of the fittest. The fittest 

individuals are those who are best adapted to their environment, and who thus survive and 

reproduce. 

In EA the term chromosome typically refers to a candidate solution to a problem, often encoded 

as a bit string. The "genes" are either single bits or short blocks of adjacent bits that encode a 

particular element of the candidate solution (e.g., in the context of multi-parameter function 

optimization the bits encoding a particular parameter might be considered to be a gene). An 

allele in a bit string is either 0 or 1; for larger alphabets more alleles are possible at each locus. 

Crossover typically consists of exchanging genetic material between two single chromosome 

parents. Mutation consists of flipping the bit at a randomly chosen locus (or, for larger 

alphabets, replacing the symbol at a randomly chosen locus with a randomly chosen new 

symbol) [2]. 

In that way EA are search methods that take their inspiration from natural selection and survival 

of the fittest in the biological world. EAs differ from more traditional optimization techniques in 

the way that they involve a search from a "population" of solutions, not from a single point. 
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Each iteration of an EA involves a competitive selection that weeds out poor solutions. The 

solutions with high "fitness" are "recombined" with other solutions by swapping parts of a 

solution with another. Solutions are also "mutated" by making a small change to a single 

element of the solution. Recombination and mutation are used to generate new solutions that are 

biased towards regions of the space for which good solutions have already been seen.  

The basic cycle of EA is shown in Figure 1 [3]. 
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Fig. 1. The basic cycle of EA 
 

There are several different types of EA [1]. These include: 

 evolutionary programming (EP), which focus on optimizing continuous functions without 

recombination;  

 evolutionary strategies (ES), which focus on optimizing continuous functions with 

recombination;  

 genetic algorithms (GA), which focus on optimizing general combinatorial problems; 

 genetic programming (GP), which evolves programs. 

 

Genetic algorithms overview  

GA is a subclass of evolutionary algorithms where the elements of the search space are binary 

strings or arrays of other elementary types. GA is an optimization and search technique based on 

the principles of genetics and natural selection. GA allows a population composed of many 

individuals to evolve under specified selection rules to a state that maximizes the “fitness” (i.e., 

minimizes the cost function) [1; 2; 6; 7]. The standard GA is as follows: 

{   %  Generate random population of chromosomes 

     Initialize population; 

     %  Evaluate the fitness of each chromosome in the population 

     Evaluate population;                                                           [Fitness] 

     %  Create, accept, and test a new population: 

     while Termination_Criteria_Not_Satisfied 

    {    %  Select according to fitness 

          Select parents for reproduction;                                   [Selection] 
         %  With a crossover probability perform crossover or copy parents 

         Perform crossover;                                                          [Crossover] 

         %  With a mutation probability mutate offspring at each position in chromosome 

         Perform mutation;                                                           [Mutation] 

         Accept new generation; 

         Evaluate population;                                                        [Fitness] 

    } 

} 
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The simple GA begins by defining the optimization variables, the cost function and the cost. It 

ends like other optimization algorithms by testing for convergence (see Figure 2) [5]. 
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Convergence check
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Fig. 2. Flowchart of GA 

 

There are four main differences that separate GA from traditional search and optimization 

procedures]: 

1. GA uses an encoding of the parameters - not the parameters themselves; 

2. GA searches from a population of search points - not a single point; 

3. GA uses only the objective function to test solution quality - not other additional knowledge; 

4. GA use probabilistic transition rules - not deterministic rules. 

For practical purposes GA activity is implemented in the following way [6]. According to 

flowchart in Figure 3, the GA begins by defining a chromosome or an array of variable values to 

be optimized. Chromosome is written as an Nvar element row vector – 

chromosome=[p1,p2,...pN]. Each chromosome has a cost found by evaluating the cost function f 

at p1,p2,...pN: cost=f(chromosome)=f(p1,p2,...pN). The initial population has Npop chromosomes 

and is an Npop x Nbits matrix filled with random ones and zeros. The GA works with the binary 

encodings, but the cost function requires continuous variables. Whenever the cost function is 

evaluated, the chromosome must first be decoded. 

Next, the variables are passed to the cost function for evaluation. The Npop costs and associated 

chromosomes are ranked from lowest cost to highest cost. Then, only the best are selected to 

continue, while the rest are deleted. The selection rate Xrate is the fraction of Npop that survives 

for the next step of mating. The number of chromosomes that are kept in each generation is 

Nkeep=XrateNpop. Natural selection occurs within each iteration of the algorithm.  

Two chromosomes are selected from the mating pool of Nkeep chromosomes to produce two new 

offspring. Pairing takes place in the mating population until Npop-Nkeep offspring are born to 

replace the discarded chromosomes. 

Mating is the creation of one or more offspring from the parents selected in the pairing process. 

The most common form of mating involves two parents that produce two offspring (see Figure 

3) [6]. 
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Fig. 3. The creation of offspring 

 

Random mutations alter a certain percentage of the bits from the list of chromosomes. Mutation 

can introduce characteristics not in the original population. A single point mutation changes a 1 

to a 0, and conversely. Mutation points are randomly selected from the Npop x Nbits total number 

of bits in the population matrix. Increasing the number of mutations tends to distract the 

algorithm from converging on a best solution.  

After the mutations take place, the costs associated with the offspring and mutated 

chromosomes are calculated. The number of generations that evolve depends on whether an 

acceptable solution is reached or a set number of iterations is exceeded. After a while, all the 

chromosomes and associated costs would become the same if it were not for mutations. At this 

point the algorithm should be stopped [6]. 

To illustrate the work of GA the following function has been selected f(x)=x
2
*sin(x) with 

minimum: f(-8.0962)=-63.635 for -10≤x≤10 (see Fig. 4). Best cost=-63.635 and best solution=-

8.0962. 

 
 

Fig. 4.Test function f(x)=x
2
*sin(x) 

 

The goal of the experiment was to find the minimum of the function with the help of GA. The 

influence of three parameters on the quality of optimization has been investigated: 

1. population size; 

2. mutation rate; 

3. number of bits in parameters. 

In the first experiment the initial parameters have been as follows: mutation rate=0.15 and 

number of bits=8. In all occasions the number of iterations was 100. Results are shown in Figure 

5. 
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The population size has been changed within the boundaries from 2 up to 128. Image a) in 

Figure 5 shows that the minimum of the function has been reached in cases when the population 

size is 8, 10, 12, 14, 16. The vertical line shows the optimal population size=8, the value of 

which has been used further on. It has been established, that the further increase of population 

size does not especially affect the quality of optimization. Image b) in Figure 5 shows the cost 

changes in the process of iterations at optimal population size=8. 
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Fig. 5. Optimization dependence on parameter population size 

 

In the second experiment the initial parameters have been the following: population size=8 and 

number of bits=8. Results are shown in Figure 6.  

The mutation rate has been changed within the boundaries from 0.05 till 1.5. Image a) in Figure 

6 shows that the minimum of the function has been reached in cases, when the mutation rate is 

from 0.15 till 0.5. The vertical line shows the optimal mutation rate=0.15. It has been 

established that the further increase of mutation rate does not make it possible to reach the 

optimal result. Image b) in Figure 6 shows the cost changes in the process of iterations at the 

mutation rate=0.15.  
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Fig. 6. Optimization dependence on parameter mutation rate 

 

In the third experiment the initial parameters have been as follows: population size=8 and 

mutation rate=0.15. Results are shown in Figure 7.      
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Fig. 7. Optimization dependence on parameter number of bits 

 

The number of bits has been changed within the boundaries from 2 till 64. It can be seen from 

image a) (Figure 7) that the minimum of the function has been reached at the number of bits=8. 

Acceptable results have been reached also when the number of bits is 20, 32 and 64. The vertical 

line shows the optimal number of bits in parameters=8. Image b) in Figure 7 shows the cost 

changes in the process of iterations at the optimal number of bits=8. 

The experiment demonstrates GA usefulness in solving different optimization exercises. 

 

 The significance of genetic programming 

The term Genetic Programming has two possible meanings. First, it is used to subsume all 

evolutionary algorithms that have tree data structures as genotypes. Second, it can also be 

defined as the set of all evolutionary algorithms that breed programs, algorithms and similar 

constructs [8].  

The GP approach can be described as f=fi +ei, where each individual fi is a function composed 

recursively from the set F={f1,…fNf} of Nf  elementary functions and from the set T={t1,…tNf} of 

Nt terminals (ei - random error term). Terminals can be arithmetic (+, *, /), mathematical (sin, 

cos), Boolean (and, or, not), conditional (if-then-else), looping (for, repeat). Terminals are 

operations that take no arguments but return a value (variables or constant values). Beside the 

variable x, terminals can be random or user defined constants. The fitness of each individual 

should be a continuous function of the corresponding scalar error.  

The main difference between GA and GP is the representation of the solution. GA creates a 

string of numbers that represent the solution. GP creates computer programs in the scheme 

computer languages as the solution and individuals are represented as trees.  

GP consists of the following four steps: 

1) Generate an initial population of random compositions of the functions and terminals of the 

problem (computer programs). 

2) Execute each program in the population and assign it a fitness value according to how well it 

solves the problem. 

3) Create a new population of computer programs (copy the best existing programs, create new 

computer programs by mutation, create new computer programs by crossover). 

4) The best computer program that appeared in any generation, the best-so-far solution, is 

designated as the result of genetic programming [8]. 

GP also uses reproduction, crossover, mutation and differs from other EA in the implementation 

of the operators of crossover and mutation.  
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In the case of GP search space (phenotypes) is the set of formulas and trees are the natural 

representation of formulas (genotypes). An example of tree-based representation is shown in 

Figure 8.  
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Fig. 8. An example of tree-based representation 
 

A typical application of GP is a symbolic regression. Symbolic regression is the procedure of 

inducing a symbolic equation, function, or program that fits given numerical data. A GP system 

performing symbolic regression takes a number of numerical input/output relations, called 

fitness cases, and produces a function or program that is consistent with these fitness cases [9]. 

As an illustration the following example has been given.  

GP symbolic regression method allows reconstructing of the mathematical function based on the 

given set of points. In this context, regression is a process in the course of which the 

reconstruction of the function according to a definite data set takes place. In the method of 

symbolic regression nor the initial coefficients of the function are known, nor the expression 

under search is known. One accepts that there are generated expression trees and calculates 

fitness (see Fig. 9). 
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Fig. 9. Acquired pair of expressions  

 

Afterwards, from the acquired expressions one chooses sub-trees randomly and thus new trees 

are obtained (see Fig. 10).  
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Fig. 10. Acquired new trees 
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On accepting that the fitness of a new tree is the best for the expression y=3x+3, random sub-

tree is chosen to mutate (see Fig. 11). 
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Fig. 11. Actual data generated using formula y=3x+2+  

 

Thus, the solution has been obtained with the best fitness. Other child tree has a worse fitness. 

Such methodology is widely applied in constructing of GP trees and is used to solve practical 

tasks, which will be further investigated in future work. 

 

Conclusions and future work 

EA are viewed as a global optimization method although convergence to a global optimum is 

only guaranteed in a weak probabilistic sense:  

 GP are well suited for problems that require the determination of a function that can be 

simply expressed in a functional form;  

 ES and EP are well suited for optimizing continuous functions;  

 GA are well suited for optimizing combinatorial problems.  

The main advantage of GP is that it performs a global search for a model, contrary to the local 

greedy search of most traditional machine learning algorithms. Methodology investigated in the 

paper will be used in further scientific research that will deal with the solutions by using genetic 

programming. 
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