
ISSN 1691-5402

ISBN 978-9984-44-028-6

Environment. Technology. Resources

Proceedings of the 7th International Scientific and Practical Conference. Volume I1

© Rēzeknes Augstskola, Rēzekne, RA Izdevniecība, 2009

EVOLUTIONARY ALGORITHMS AT CHOICE: FROM GA TO GP

EVOLŪCIJAS ALGORITMI PĒC IZVĒLES: NO GA UZ GP

Peter Grabusts

Rezekne Higher Educational Institution

Atbrivoshanas al. 90, Rezekne LV 4600, Latvia

Phone: +(371)4623798, e-mail: peter@ru.lv

Abstract. Nowadays the possibilities of evolutionary algorithms are widely used in many optimization

and classification tasks. Evolutionary algorithms are stochastic search methods that try to emulate Darwin’s

principle of natural evolution. There are (at least) four paradigms in the world of evolutionary algorithms:

evolutionary programming, evolution strategies, genetic algorithms and genetic programming. This paper

analyzes present-day approaches of genetic algorithms and genetic programming and examines the possibilities

of genetic programming that will be used in further research. The paper presents implementation examples that

show the working principles of evolutionary algorithms.

Keywords: evolutionary algorithms, genetic algorithm, genetic programming.

Evolutionary algorithms: an introduction

Evolutionary algorithms (EA) are population-based meta-heuristic optimization algorithms that

use biology-inspired mechanisms like mutation, crossover, natural selection, and survival of the

fittest in order to refine a set of solution candidates iteratively [1].

All EA have three features in common:

1. They use a population of potential solutions to the problem that is to be solved.

2. They rate the quality of these solutions with an objective function, and base the selection of

surviving solutions on this quality measure.

3. They have a reproduction stage in which new solutions are constructed inheriting traits from

current solutions.

Three basic mechanisms drive natural evolution: reproduction, mutation and selection. These

mechanisms act on the chromosomes containing the genetic information of the individual (the

genotype), rather than on the individual (the phenotype). Reproduction is the process in which

new individuals are introduced into population. During reproduction, recombination or

crossover occurs, transmitting to the offspring chromosomes that are common of both parent’s

genetic information. Mutation introduces small changes into the inherited chromosomes.

Selection is a process guided by the Darwinian principle of survival of the fittest. The fittest

individuals are those who are best adapted to their environment, and who thus survive and

reproduce.

In EA the term chromosome typically refers to a candidate solution to a problem, often encoded

as a bit string. The "genes" are either single bits or short blocks of adjacent bits that encode a

particular element of the candidate solution (e.g., in the context of multi-parameter function

optimization the bits encoding a particular parameter might be considered to be a gene). An

allele in a bit string is either 0 or 1; for larger alphabets more alleles are possible at each locus.

Crossover typically consists of exchanging genetic material between two single chromosome

parents. Mutation consists of flipping the bit at a randomly chosen locus (or, for larger

alphabets, replacing the symbol at a randomly chosen locus with a randomly chosen new

symbol) [2].

In that way EA are search methods that take their inspiration from natural selection and survival

of the fittest in the biological world. EAs differ from more traditional optimization techniques in

the way that they involve a search from a "population" of solutions, not from a single point.

185

Grabusts P. Evolutionary algorithms at choice: from GA to GP

 186

Each iteration of an EA involves a competitive selection that weeds out poor solutions. The

solutions with high "fitness" are "recombined" with other solutions by swapping parts of a

solution with another. Solutions are also "mutated" by making a small change to a single

element of the solution. Recombination and mutation are used to generate new solutions that are

biased towards regions of the space for which good solutions have already been seen.

The basic cycle of EA is shown in Figure 1 [3].

 Initial Population

Create an initial

population of random

individuals

 Evaluation

Compute the objective

values of the solution

candidates

 Fitness Assignment

Use the objective values

to determine fitness

values

 Reproduction

Create new individuals

from the mating pool

by crossover and

mutation

 Selection

Select the fittest

individuals for

reproduction

Fig. 1. The basic cycle of EA

There are several different types of EA [1]. These include:

 evolutionary programming (EP), which focus on optimizing continuous functions without

recombination;

 evolutionary strategies (ES), which focus on optimizing continuous functions with

recombination;

 genetic algorithms (GA), which focus on optimizing general combinatorial problems;

 genetic programming (GP), which evolves programs.

Genetic algorithms overview

GA is a subclass of evolutionary algorithms where the elements of the search space are binary

strings or arrays of other elementary types. GA is an optimization and search technique based on

the principles of genetics and natural selection. GA allows a population composed of many

individuals to evolve under specified selection rules to a state that maximizes the “fitness” (i.e.,

minimizes the cost function) [1; 2; 6; 7]. The standard GA is as follows:

{ % Generate random population of chromosomes

 Initialize population;

 % Evaluate the fitness of each chromosome in the population

 Evaluate population; [Fitness]

 % Create, accept, and test a new population:

 while Termination_Criteria_Not_Satisfied

 { % Select according to fitness

 Select parents for reproduction; [Selection]
 % With a crossover probability perform crossover or copy parents

 Perform crossover; [Crossover]

 % With a mutation probability mutate offspring at each position in chromosome

 Perform mutation; [Mutation]

 Accept new generation;

 Evaluate population; [Fitness]

 }

}

Grabusts P. Evolutionary algorithms at choice: from GA to GP

 187

The simple GA begins by defining the optimization variables, the cost function and the cost. It

ends like other optimization algorithms by testing for convergence (see Figure 2) [5].

Define cost function,

cost, variables and GA

parameters

Generate initial population

Decode chromosomes

Find cost for each chromosome

Select mates

Convergence check

Mating

Mutation

Fig. 2. Flowchart of GA

There are four main differences that separate GA from traditional search and optimization

procedures]:

1. GA uses an encoding of the parameters - not the parameters themselves;

2. GA searches from a population of search points - not a single point;

3. GA uses only the objective function to test solution quality - not other additional knowledge;

4. GA use probabilistic transition rules - not deterministic rules.

For practical purposes GA activity is implemented in the following way [6]. According to

flowchart in Figure 3, the GA begins by defining a chromosome or an array of variable values to

be optimized. Chromosome is written as an Nvar element row vector –

chromosome=[p1,p2,...pN]. Each chromosome has a cost found by evaluating the cost function f

at p1,p2,...pN: cost=f(chromosome)=f(p1,p2,...pN). The initial population has Npop chromosomes

and is an Npop x Nbits matrix filled with random ones and zeros. The GA works with the binary

encodings, but the cost function requires continuous variables. Whenever the cost function is

evaluated, the chromosome must first be decoded.

Next, the variables are passed to the cost function for evaluation. The Npop costs and associated

chromosomes are ranked from lowest cost to highest cost. Then, only the best are selected to

continue, while the rest are deleted. The selection rate Xrate is the fraction of Npop that survives

for the next step of mating. The number of chromosomes that are kept in each generation is

Nkeep=XrateNpop. Natural selection occurs within each iteration of the algorithm.

Two chromosomes are selected from the mating pool of Nkeep chromosomes to produce two new

offspring. Pairing takes place in the mating population until Npop-Nkeep offspring are born to

replace the discarded chromosomes.

Mating is the creation of one or more offspring from the parents selected in the pairing process.

The most common form of mating involves two parents that produce two offspring (see Figure

3) [6].

Grabusts P. Evolutionary algorithms at choice: from GA to GP

 188

11000 1010000

00101 1001100

11100 1100011

00101 0111001

110000111001

001011010000

110000111001 offspring 1

001011010000 offspring 2

Crossover point

Parent 1

Parent 2

Population

matrix

Fig. 3. The creation of offspring

Random mutations alter a certain percentage of the bits from the list of chromosomes. Mutation

can introduce characteristics not in the original population. A single point mutation changes a 1

to a 0, and conversely. Mutation points are randomly selected from the Npop x Nbits total number

of bits in the population matrix. Increasing the number of mutations tends to distract the

algorithm from converging on a best solution.

After the mutations take place, the costs associated with the offspring and mutated

chromosomes are calculated. The number of generations that evolve depends on whether an

acceptable solution is reached or a set number of iterations is exceeded. After a while, all the

chromosomes and associated costs would become the same if it were not for mutations. At this

point the algorithm should be stopped [6].

To illustrate the work of GA the following function has been selected f(x)=x
2
*sin(x) with

minimum: f(-8.0962)=-63.635 for -10≤x≤10 (see Fig. 4). Best cost=-63.635 and best solution=-

8.0962.

Fig. 4.Test function f(x)=x
2
*sin(x)

The goal of the experiment was to find the minimum of the function with the help of GA. The

influence of three parameters on the quality of optimization has been investigated:

1. population size;

2. mutation rate;

3. number of bits in parameters.

In the first experiment the initial parameters have been as follows: mutation rate=0.15 and

number of bits=8. In all occasions the number of iterations was 100. Results are shown in Figure

5.

Grabusts P. Evolutionary algorithms at choice: from GA to GP

 189

The population size has been changed within the boundaries from 2 up to 128. Image a) in

Figure 5 shows that the minimum of the function has been reached in cases when the population

size is 8, 10, 12, 14, 16. The vertical line shows the optimal population size=8, the value of

which has been used further on. It has been established, that the further increase of population

size does not especially affect the quality of optimization. Image b) in Figure 5 shows the cost

changes in the process of iterations at optimal population size=8.

-80

-70

-60

-50

-40

-30

-20

-10

0

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Cost Solution

Optimal
population
size=8

Population size -->

a) Cost dependence on population size b) best solution when population size=8

Fig. 5. Optimization dependence on parameter population size

In the second experiment the initial parameters have been the following: population size=8 and

number of bits=8. Results are shown in Figure 6.

The mutation rate has been changed within the boundaries from 0.05 till 1.5. Image a) in Figure

6 shows that the minimum of the function has been reached in cases, when the mutation rate is

from 0.15 till 0.5. The vertical line shows the optimal mutation rate=0.15. It has been

established that the further increase of mutation rate does not make it possible to reach the

optimal result. Image b) in Figure 6 shows the cost changes in the process of iterations at the

mutation rate=0.15.

-80

-70

-60

-50

-40

-30

-20

-10

0

0 0,2 0,4 0,6 0,8 1 1,2 1,4

Cost Solution

Mutation rate -->

Optimal
rate=0.15

a) Cost dependence on mutation rate b) best solution when mutation rate=0.15

Fig. 6. Optimization dependence on parameter mutation rate

In the third experiment the initial parameters have been as follows: population size=8 and

mutation rate=0.15. Results are shown in Figure 7.

Grabusts P. Evolutionary algorithms at choice: from GA to GP

 190

-80

-70

-60

-50

-40

-30

-20

-10

0

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Cost Solution

Number of bits -->

Optimal
number=8

a) Cost dependence on the number of bits b) best solution when number of bits=8

Fig. 7. Optimization dependence on parameter number of bits

The number of bits has been changed within the boundaries from 2 till 64. It can be seen from

image a) (Figure 7) that the minimum of the function has been reached at the number of bits=8.

Acceptable results have been reached also when the number of bits is 20, 32 and 64. The vertical

line shows the optimal number of bits in parameters=8. Image b) in Figure 7 shows the cost

changes in the process of iterations at the optimal number of bits=8.

The experiment demonstrates GA usefulness in solving different optimization exercises.

 The significance of genetic programming

The term Genetic Programming has two possible meanings. First, it is used to subsume all

evolutionary algorithms that have tree data structures as genotypes. Second, it can also be

defined as the set of all evolutionary algorithms that breed programs, algorithms and similar

constructs [8].

The GP approach can be described as f=fi +ei, where each individual fi is a function composed

recursively from the set F={f1,…fNf} of Nf elementary functions and from the set T={t1,…tNf} of

Nt terminals (ei - random error term). Terminals can be arithmetic (+, *, /), mathematical (sin,

cos), Boolean (and, or, not), conditional (if-then-else), looping (for, repeat). Terminals are

operations that take no arguments but return a value (variables or constant values). Beside the

variable x, terminals can be random or user defined constants. The fitness of each individual

should be a continuous function of the corresponding scalar error.

The main difference between GA and GP is the representation of the solution. GA creates a

string of numbers that represent the solution. GP creates computer programs in the scheme

computer languages as the solution and individuals are represented as trees.

GP consists of the following four steps:

1) Generate an initial population of random compositions of the functions and terminals of the

problem (computer programs).

2) Execute each program in the population and assign it a fitness value according to how well it

solves the problem.

3) Create a new population of computer programs (copy the best existing programs, create new

computer programs by mutation, create new computer programs by crossover).

4) The best computer program that appeared in any generation, the best-so-far solution, is

designated as the result of genetic programming [8].

GP also uses reproduction, crossover, mutation and differs from other EA in the implementation

of the operators of crossover and mutation.

Grabusts P. Evolutionary algorithms at choice: from GA to GP

 191

In the case of GP search space (phenotypes) is the set of formulas and trees are the natural

representation of formulas (genotypes). An example of tree-based representation is shown in

Figure 8.

15
)3(2

y
x

.

+

2

-

+ /p

x 3 y +

5 1

=

;

i

while

< =1

i 20 i +

i 1
a) arithmetic formula b) program

Fig. 8. An example of tree-based representation

A typical application of GP is a symbolic regression. Symbolic regression is the procedure of

inducing a symbolic equation, function, or program that fits given numerical data. A GP system

performing symbolic regression takes a number of numerical input/output relations, called

fitness cases, and produces a function or program that is consistent with these fitness cases [9].

As an illustration the following example has been given.

GP symbolic regression method allows reconstructing of the mathematical function based on the

given set of points. In this context, regression is a process in the course of which the

reconstruction of the function according to a definite data set takes place. In the method of

symbolic regression nor the initial coefficients of the function are known, nor the expression

under search is known. One accepts that there are generated expression trees and calculates

fitness (see Fig. 9).

+

* *

3 x x x

*

* *

x 5 3 x

y=3x+x2 y=(x*5)*(3*x)=15x2

Fig. 9. Acquired pair of expressions

Afterwards, from the acquired expressions one chooses sub-trees randomly and thus new trees

are obtained (see Fig. 10).

+

* *

3 x x x

*

* *

x 5 3 x

y=3x+x2 y=(x*5)*(3*x)=15x2

+

*

3 x

*

x 5 x

3

y=3x+3

*

*

*

x xy=(x*5)*(x*x*x)=5x4

Fig. 10. Acquired new trees

Grabusts P. Evolutionary algorithms at choice: from GA to GP

 192

On accepting that the fitness of a new tree is the best for the expression y=3x+3, random sub-

tree is chosen to mutate (see Fig. 11).

+

*

3 x

3

y=3x+3 y=3x+2

+

*

3 x

2

Fig. 11. Actual data generated using formula y=3x+2+

Thus, the solution has been obtained with the best fitness. Other child tree has a worse fitness.

Such methodology is widely applied in constructing of GP trees and is used to solve practical

tasks, which will be further investigated in future work.

Conclusions and future work

EA are viewed as a global optimization method although convergence to a global optimum is

only guaranteed in a weak probabilistic sense:

 GP are well suited for problems that require the determination of a function that can be

simply expressed in a functional form;

 ES and EP are well suited for optimizing continuous functions;

 GA are well suited for optimizing combinatorial problems.

The main advantage of GP is that it performs a global search for a model, contrary to the local

greedy search of most traditional machine learning algorithms. Methodology investigated in the

paper will be used in further scientific research that will deal with the solutions by using genetic

programming.

References

1. Weise T. Global Optimization Algorithms - Theory and Application, 2008. URL: http://www.it-

weise.de/index.html - Visit date January 2009.

2. Mitchell M. An introduction to Genetic Algorithms. A Bradford Book The MIT Press, 1999.

3. Introduction on Evolutionary Algorithms. URL: http://neo.lcc.uma.es/opticomm/introea.html - Visit date

January 2009.

4. Holland J.H. Adaptation in Natural and Artificial Systems. Univ. of Michigan Press: Ann Arbor. Reprinted in

1992 by MIT Press, Cambridge MA.

5. A Field Guide to Genetic Programming. URL: http://www.gp-field-guide.org.uk/ - Visit date January 2009.

6. Haupt R.L., Haupt S.E. Practical Genetic Algorithms. John Wiley & Sons, 2004.

7. Karr C., Freeman L.M. Industrial Applications of Genetic Algorithms. International Series on Computational

Intelligence: CRC Press, 1999.

8. Koza J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection.

Cambridge: MIT Press, 1992.

9. Banzhaf W., Nordin P., Keller R.E. and Francone F.D. Genetic Programming- An Introduction. Morgan

Kaufmann Publishers, 1998.

http://www.it-weise.de/index.html
http://www.it-weise.de/index.html
http://neo.lcc.uma.es/opticomm/introea.html
http://www.gp-field-guide.org.uk/

