Aleksejs Jurenoks


Nowadays there are many views related to the online testing systems. The importance of acquisition of the final result is considered to be the main disadvantage in the classic test system where the learner chooses the correct answer from the suggested set of answers; this does not motivate a person to define the answer themselves or to create a logical chain of problem solutions. The integration of the intellectual processes into the existing training systems will prevent the drawbacks of the existing knowledge assessment systems and will make it possible to assess the learners’ ability to make logical decisions, to clarify the answers using examples and to evaluate the method of achieving the result. The article describes the algorithm for creating the intellectual, user adapted questions; this algorithm uses the model of the learner from the set of questions and by fulfilling the modified Dijkstra's algorithm chooses the questions that help the learner reach the result that is most appropriate to their competence level.



Adaptive system; Intelligent system; Moodle; Student classification; Quiz systems

Full Text:



Abraham, G., Balasubramanian V., & Saravanaguru RA. K. (2013). Adaptive e-Learnins Environment using Learning Style Recognition. International Journal of Evaluation and Research in Education, Vol.2, 23-31.

Azough, S., Bellafkih, M., & Bouyakhf, El H. (2010). Adaptive E-learning using Genetic Algorithms: IJCSNS International Journal of Computer Science and Network Security”, Vol.10 No.7, July 2010.

Delgado, M., Gibaja, E., Pegalajar, M.C., Pérez, O. (2006). Predicting Students’ Marks from Moodle Logs using Neural Network Models. Current Developments in TechnologyAssisted Education, Badajoz, 586-590.

El Bachari,E., Abelwahed, E.,& El Adnani, M. (2010). An Adaptive Learning Model Using Learner’s Preference. International Conference on models of information and communication systems, ENSIAS, Rabat, Morocco.

Goldberg, A. V. & Radzik, T. (1993). A Heuristic Improvement of the Bellman-Ford Algorithm. Applied Mathematics Letter, 6(3), 3-6.

Niemiec, C., Ryan, R. M. (2009). Autonomy, competence, and relatedness in the classroom. Applying self-determination theory to educational practice. Theory and Research in Education, Vol. 7(2), 133-144.

Surjono, H. D. (2011). The design of adaptive e-Learning system based on student’s learning styles. International Journal of Computer Science and Information Technology (IJCSIT), vol. 2, no. 5, 2350-2353.

Вабищевич, А. Н. (2010). Определение положения в пространстве элементов беспроводной сенсорной сети с помощью инерциальных сенсоров. Тезисы докладов научно-технической конференции студентов, аспирантов и молодых специалистов МИЭМ 2010. М.: МИЭМ, 151–152.

Гекк, М. В., Истомин, Т. Е., Файзулхаков, Я. Р., Чечендаев, А. В. (2006). Адаптивный алгоритм быстрой доставки сообщений по выделенным направлениям. Вестник молодых ученых "Ломоносов". Выпуск III, 55–60.



  • There are currently no refbacks.