

SOCIETY. INTEGRATION. EDUCATION
Proceedings of the International Scientific Conference. Volume V, May 28th-29th, 2021. 330-339

© Rēzeknes Tehnoloģiju akadēmija, 2021
https://doi.org/10.17770/sie2021vol5.6153

EVOLUTIONARY ALGORITHMS LEARNING
METHODS IN STUDENT EDUCATION

Peter Grabusts

Rezekne Academy of Technologies, Latvia

Aleksejs Zorins
Rezekne Academy of Technologies, Latvia

Abstract. Teaching experience shows that during educational process student perceive
graphical information better than analytical relationships. As a possible solution, there could
be the use of package Matlab in realization of different algorithms for IT studies. Students are
very interested in modern data mining methods, such as artificial neural networks, fuzzy logic,
clustering and evolution methods. Series of research were carried out in order to demonstrate
the suitability of the Matlab for the purpose of visualization of various simulation models of
some data mining disciplines – particularly genetic algorithms. Nowadays the possibilities of
evolutionary algorithms are widely used in many optimization and classification tasks. There
are four paradigms in the world of evolutionary algorithms: evolutionary programming,
evolution strategies, genetic algorithms and genetic programming. This paper analyses
present-day approaches of genetic algorithms and genetic programming and examines the
possibilities of genetic programming that will be used in further research. Genetic algorithm
learning methods are often undeservedly forgotten, although the implementation of their
algorithms is relatively strong and can be implemented even for students. In the research part
of the study the modelling capabilities in data mining studies were demonstrated based on
genetic algorithms and real examples. We assume that students already have prior knowledge
of genetic algorithms.
Keywords: data analysis, evolutionary algorithms, genetic algorithms, modelling, teaching.

Introduction

Evolutionary algorithms (EA) are population-based metaheuristic
optimization algorithms that use biology-inspired mechanisms like mutation,
crossover, natural selection, and survival of the fittest in order to refine a set of
solution candidates iteratively (Koza, 1992, Weise, 2009).

All EA have three features in common:
1. They use a population of potential solutions to the problem that is to be

solved.
2. They judge the quality of these solutions with an objective function and

base the selection of surviving solutions on this quality measure.

Grabusts & Zorins, 2021. Evolutionary Algorithms Learning Methods in Student Education

331

3. They have a reproduction stage in which new solutions are constructed
that inherit traits from current solutions.

Three basic mechanisms drive natural evolution: reproduction, mutation and
selection. These mechanisms act on the chromosomes containing the genetic
information of the individual, rather than on the individual. Reproduction is the
process how new individuals are introduced into population. During reproduction,
recombination or crossover occurs, transmitting to the offspring chromosomes
that are common of both parent’s genetic information. Mutation introduces small
changes into the inherited chromosomes. The fittest individuals are those best
adapted to their environment, which thus survive and reproduce.

In EA the term chromosome typically refers to a candidate solution to a
problem, often encoded as a bit string. The "genes" are either single bits or short
blocks of adjacent bits that encode a particular element of the candidate solution
(e.g., in the context of multiparameter function optimization the bits encoding a
particular parameter might be considered to be a gene). An allele in a bit string is
either 0 or 1; for larger alphabets more alleles are possible at each locus. Crossover
typically consists of exchanging genetic material between two single chromosome
parents. Mutation consists of flipping the bit at a randomly chosen locus (or, for
larger alphabets, replacing the symbol at a randomly chosen locus with a
randomly chosen new symbol) (Mitchell, 1999).

The basic cycle of EA is shown in Figure 1 (Introduction, 2011).

 Initial Population

Create an initial
population of random

individuals

 Evaluation

Compute the objective
values of the solution

candidates

 Fitness Assignment

Use the objective values
to determine fitness

values

 Reproduction
Create new individuals
from the mating pool

by crossover and
mutation

 Selection

Select the fittest
individuals for
reproduction

Figure1 The Basic Cycle of EA (Introduction, 2011)

There are several different types of EA (Weise, 2009). These include:
• evolutionary programming (EP), which focuses on optimizing

continuous functions without recombination;
• evolutionary strategies (ES), which focuses on optimizing continuous

functions with recombination;

SOCIETY. INTEGRATION. EDUCATION
Proceedings of the International Scientific Conference. Volume V, May 28th-29th, 2021. 330-339

332

• genetic algorithms (GAs), which focuses on optimizing general
combinatorial problems;

• genetic programming (GP), which evolve programs.

The Significance of Genetic Programming

Genetic programming is an automated methodology inspired by biological
evolution to find computer programs that best perform a user-defined task. It is
therefore a particular machine learning technique that uses an evolutionary
algorithm to optimize a population of computer programs according to a fitness
function determined by a program's ability to perform a given computational task
(Goldberg, 1988, Koza, 1992, Mitchell, 1999).

Genetic programming is a methodology for automatically generating
computer programs. Rather than writing programs explicitly, GP applies natural
selection and genetic recombination to evolve programs that solve a given
problem. GP is founded on the premise that computer programs can be
represented as tree structures, as shown in Figure 2 (Haupt, R. & Haupt, S., 2004).

f

f T

TT

Figure 2 Tree Structure Example (Haupt, R. & Haupt, S., 2004)

The functions (f) operate on terminals (T) to produce a result. Functions are

operations that take one or more arguments. They can be arithmetic (+, *, /),
mathematical (sin, cos), Boolean (and, or, not), conditional (if-then-else), looping
(for, repeat). Terminals are operations that take no arguments but return a value
(variables or constant values).

The main difference between GP and GA is the representation of the
solution. GP creates computer programs in the scheme computer languages as the
solution. A GA creates a string of numbers that represent the solution. GP consists
of the following four steps:

1) Generate an initial population of random compositions of the functions
and terminals of the problem (computer programs);

Grabusts & Zorins, 2021. Evolutionary Algorithms Learning Methods in Student Education

333

2) Execute each program in the population and assign it a fitness value
according to how well it solves the problem;

3) Create a new population of computer programs;
4) The best computer program that appeared in any generation, the best-

so-far solution, is designated as the result of genetic programming
(Weise, 2009).

GP difference significantly from other evolutionary algorithms in the
implementation of the operators of crossover and mutation.

Mutation is performed by randomly selecting a node in an individual tree
structure and removing that node along with any sub-tree that may exist below it.
A new sub-tree is then generated randomly and “grafted in” at the position where
the original node was removed. Example of sub-tree mutation is illustrated in
Figure 3 (Introduction, 2011; Buontempo, 2019).

+

+

X Y

3

+

+ *

/X Y Y

X 2

Y

*

/

X 2

Mutation
point

Mutation
point

Randomly
Generated
Sub-tree

Parents Offspring

Figure 3 An Example of Sub-tree Mutation (Buontempo, 2019)

Crossover involves selecting two individuals from the previous generation

and selecting a node at random in each of them. The selected nodes, along with
any sub-trees that exist below them, are exchanged between the two individuals.

There is no guarantee that GP will find an optimal solution, but a well
thought out set of functions with a reasonable fitness test will usually produce
good results (Mitchell, 1999, Karr & Freeman, 1999).

Decision Tree Representation for GP

Decision trees and decision rules are data mining methodologies applied in

many applications as a powerful solution to classification problems. In general,

SOCIETY. INTEGRATION. EDUCATION
Proceedings of the International Scientific Conference. Volume V, May 28th-29th, 2021. 330-339

334

classification is a process of learning a function that maps a data item into one of
several predefined classes.

A decision tree representation would be able to correctly handle both
numerical and categorical values. Numerical variables and values should only be
compared to numerical values or variables and only be used in numerical
functions. Similarly, categorical variables and values should only be compared to
categorical variables or values. This is a problem for the standard GP operators
(crossover, mutation and initialization) which assume that the output of any node
can be used as the input of any other node. This is called the closure property of
GP which ensures that only syntactically valid trees are created.

A solution to the closure property problem of GP is to use strongly typed
genetic programming. Strongly typed GP uses special initialization, mutation and
crossover operators. These special operators make sure that each generated tree is
syntactically correct even if tree-nodes of different data types are used. Because
of these special operators an extensive function set consisting of arithmetic (+, −,
×, /), comparison (≤, >) and logical operators (and, or, if) can be used.

Another strongly typed GP representation was introduced in (Bot &
Langdon, 2000). This linear classification GP algorithm uses a representation for
oblique decision trees. An example tree can be seen in Figure 4.

CheckCondition2Vars

CheckCondition3Vars2.5 X10 -3.0 X4 2.1 A

1.1 X4 -3.5 X6 0.3 X1 1.3 A B

Figure 4 Example Decision Tree and Its Representation in the GP (Bot & Langdon, 2000)

The leftmost children of function nodes (in this case CheckCondition2Vars

and CheckCondition3Vars) are weights and variables for a linear combination.
The rightmost children are other function nodes or target classes (in this case A
or B). Function node CheckCondition2Vars is evaluated as: if 2.5x10 − 3.0x4 ≤
2.1 then evaluate the CheckCondition3Vars node in a similar way; otherwise the
final classification is A and the evaluation of the decision tree on this particular
case is finished.

In 1998 a new representation was introduced (Hemert, 1998) - atomic
representation booleanizes all attribute values in the terminal set using atoms.
Each atom is syntactically a predicate of the form (variable operator constant)

Grabusts & Zorins, 2021. Evolutionary Algorithms Learning Methods in Student Education

335

where operator is a comparison operator (e.g., ≤ and > for continuous attributes,
= for nominal or Boolean attributes). Since the leaf nodes always return a Boolean
value (true or false) the function set consists of Boolean functions (e.g., and, or)
and possibly a decision-making function (if − then − else) (Hemert, 1998). An
example of a decision tree using the atomic representation can be seen in Figure
5. Input variables are booleanized using atoms in the leaf nodes. The internal
nodes consist of Boolean functions and possibly a decision-making function.

VariableX < ValueX

VariableY < ValueY VariableZ < ValueZ

OR

AND

Figure 5 An Example of a Decision Tree Using an Atomic Representation (Hemert, 1998)

In conclusion there is many different possibilities for the representation of
decision trees.

Experimental Part

A function was selected to illustrate GA operation f(x)=x2*sin(x) with

minimum: f (-8.0962) =-63.635 for -10≤x≤10 (see Fig. 6). Best cost=-63.635 and
best solution=-8.0962.

Figure 6 Test Function f(x)=x2*sin(x)

SOCIETY. INTEGRATION. EDUCATION
Proceedings of the International Scientific Conference. Volume V, May 28th-29th, 2021. 330-339

336

The aim of the experiment was to find the minimum of the function with the
help of GA (Grabusts, 2009).The effect of three parameters on the quality of
optimization was studied:

1. population size;
2. mutation rate;
3. number of bits in parameters.
In the first experiment, the initial parameters were as follows: mutation

rate=0.15 and number of bits=8. In all cases, the number of iterations was 100.
Population size was varied from 2 to 128. Figure 7 shows that the minimum

of the function is stably reached in cases when the population size is
8,10,12,14,16. The vertical line shows the optimal population size = 8, the value
of which was used below. It was found that further increase in population size
does not significantly affect the quality of optimization. Figure 8 shows the cost
changes in the iteration process at optimal population size = 8.

Figure 7 Dependence of Cost on Population Size

The mutation rate was ranged from 0.05 to 1.5. The minimum of the function

is stably reached in cases when the mutation rate is from 0.15 to 0.5. The vertical
line shows the optimal mutation rate = 0.15 (Fig. 9). It was found that further
increase of the mutation rate does not give the optimal result.

-80

-70

-60

-50

-40

-30

-20

-10

0
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Cost

Number of bits -->

Optimal
number=8

Grabusts & Zorins, 2021. Evolutionary Algorithms Learning Methods in Student Education

337

Figure 8 Best Solution When Population Size=8

Figure 9 Dependence of Cost on Mutation Rate =0.15

The experiments clearly demonstrate the usefulness of GA in solving various

optimization tasks for educational research (Grabusts, 2009).

SOCIETY. INTEGRATION. EDUCATION
Proceedings of the International Scientific Conference. Volume V, May 28th-29th, 2021. 330-339

338

Conclusions

The term GP has two possible meanings. First, it is used to subsume all
evolutionary algorithms that have tree data structures as genotypes. Second, it can
also be defined as the set of all evolutionary algorithms that breed programs,
algorithms, and similar constructs (Gupta & Sinha, 2020).

The main difference between GA and GP is the representation of the
solution. GA creates a string of numbers that represent the solution. GP creates
computer programs in the scheme computer languages as the solution and
individuals are represented as trees.

The main advantage of GP is that it performs a global search for a model,
contrary to the local greedy search of most traditional machine learning
algorithms. To design the decision tree using GP, everyone is defined as a decision
tree, which represents both the genotype and the phenotype.

The methodology investigated in the work will be used in further scientific
research for student’s investigations that will deal with design the decision tree
using genetic programming.

This paper analyses present-day approaches of GA and GP and examines the
possibilities of GP that will be used in further student’s research. GA learning
methods are often undeservedly forgotten, although the implementation of their
algorithms is relatively strong and can be implemented even for students in this
future scientific research.

References

Bot, M.C., & Langdon, W.B. (2000). Application of Genetic Programming to Induction of

Linear Classification Trees. Proceedings of the Third European Conference on Genetic
Programming. Received from: https://link.springer.com/chapter/10.1007/978-3-540-
46239-2_18

Buontempo, F. (2019). Genetic Algorithms and Machine Learning for Programmers: Create
AI Models and Evolve Solutions. The Pragmatic Programmers, 225p.

Goldberg, D. (1988). Genetic Algorithms in Search, Optimization and Machine Learning. 13th
ed. Edition. Addison-Wesley Professional, 432p.

Grabusts, P. (2009). Evolutionary algorithms at choice: From GA to GP. 7th International
Scientific and Practical Conference “Environment, Technology and Resources”,
Rezekne. Volume 2, 2009, 185-192.

Gupta, S., & Sinha, S. (2020). Academic Staff planning, allocation and optimization using
Genetic Algorithm under the framework of Fuzzy Goal Programming. Procedia
Computer Science, 172. Retrieved from: https://www.sciencedirect.com/science/
article/pii/S1877050920314599

Haupt, R.L., & Haupt S.E. (2004). Practical Genetic Algorithms. John Wiley & Sons.
Introduction on Evolutionary Algorithms. (2011). Retrieved from: https://neo.lcc.uma.es/

opticomm/introea.html

https://link.springer.com/chapter/10.1007/978-3-540-46239-2_18
https://link.springer.com/chapter/10.1007/978-3-540-46239-2_18
https://www.sciencedirect.com/science/article/pii/S1877050920314599
https://www.sciencedirect.com/science/article/pii/S1877050920314599
https://neo.lcc.uma.es/opticomm/introea.html
https://neo.lcc.uma.es/opticomm/introea.html

Grabusts & Zorins, 2021. Evolutionary Algorithms Learning Methods in Student Education

339

Karr, C., & Freeman, L.M. (1999). Industrial Applications of Genetic Algorithms. International
Series on Computational Intelligence: CRC Press.

Koza, J.R. (1992). Genetic Programming: On the Programming of Computers by Means of
Natural Selection. Cambridge: MIT Press.

Mitchell, M. (1999). An introduction to Genetic Algorithms. A Bradford Book. The MIT Press.
Hemert, J.I. (1998). Applying Adaptive Evolution Algorithms to Hard Problems. Master Thesis.

Leiden University.
Weise, T. (2009). Global Optimization Algorithms - Theory and Application. Retrieved from:

http://www.it-weise.de/projects/book.pdf

http://www.it-weise.de/projects/book.pdf

