TRANSFER LEARNING FOR TRAINING ACCELARATION

Ilmārs Apeināns, Vitālijs Žukovs, Sergejs Kodors, Imants Zarembo

Abstract


In this work, authors compare training time of standard convolution neuron network model with model trained using transfer learning. Both models are based on Alexnet architecture. CNN model training from scratch included full model, but using transfer learning, some layers of model were frozen for learning acceleration considering transfer learning methodology.

Keywords


Alexnet; CNN; Convolution Neuron Network; Model; Transfer learning;

Full Text:

PDF

References


Konvolucionāli neironu tīkli vizuālai atpazīšanai [tiešsaiste], [atsauce uz 07.08.2020.]. Pieejams: https://cs231n.github.io/convolutional-networks/

Transfer learning pamatideja [tiešsaiste], [atsauce uz 18.08.2020.]. Pieejams: https://towardsdatascience.com/transfer-learning-with-convolutional-neural-networks-in-pytorch-dd09190245ce

Alexnet arhitektūra [tiešsaiste], [atsauce uz 12.08.2020.]. Pieejams: https://medium.com/@smallfishbigsea/a-walk-through-of-alexnet-6cbd137a5637

H. Mureșan & O. Mihai. Fruit recognition from images using deep learning. Acta Universitatis Sapientiae, Informatica, vol. 10, pp. 26-42, 2018.

CIFAR100 datu kopa [tiešsaiste], [atsauce uz 12.08.2020.].




DOI: https://doi.org/10.17770/het2021.25.6773

Refbacks

  • There are currently no refbacks.