EXPERIMENTAL COMPARISON OF CONVOLUTION NEURON NETWORK ARCHITECTURES
Abstract
Keywords
Full Text:
PDFReferences
Konvolucionāli neironu tīkli vizuālai atpazīšanai [tiešsaiste], [atsauce uz 07.04.2020.]. Pieejams: https://cs231n.github.io/convolutional-networks/
Alexnet arhitektūra [tiešsaiste], [atsauce uz 07.04.2020.]. Pieejams: https://medium.com/@smallfishbigsea/a-walk-through-of-alexnet-6cbd137a5637
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deepconvolutional neural networks. In Advances in neural information processing systems, pp. 1097–1105, 2012
Andrew G., et al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, 2017. [tiešsaiste], [atsauce un 07.04.2020.]. Pieejams: https://arxiv.org/abs/1704.04861
M. Sandler, et al. MobileNetV2: Inverted Residuals and Linear Bottlenecks, 2019. [tiešsaiste], [atsauce un 07.04.2020.]. Pieejams: https://arxiv.org/pdf/1801.04381.pdf
H. Mureșan & O. Mihai. Fruit recognition from images using deep learning. Acta Universitatis Sapientiae, Informatica, vol. 10, pp. 26-42, 2018.
Tensorflow Lite [teiššaiste], [atsauce uz 07.04.2020.]. Pieejams: https://www.tensorflow.org/lite
Samsung S8 mobilā telefona specifikācija [tiešsaiste], [atsauce uz 07.04.2020.]. Pieejams: https://www.sammobile.com/samsung/galaxy-s8/specs/
Android Studio laika mērīšanas funkcija [tiešsaiste], [atsauce un 07.04.2020.]. Pieejams: https://developer.android.com/reference/java/lang/System
DOI: https://doi.org/10.17770/het2020.24.6742
Refbacks
- There are currently no refbacks.