EXPERIMENTAL COMPARISON OF CONVOLUTION NEURON NETWORK ARCHITECTURES

Authors

  • Ilmārs Apeināns Rezekne Academy of Technologies (LV)
  • Vitālijs Žukovs Rezekne Academy of Technologies (LV)
  • Sergejs Kodors Rezekne Academy of Technologies (LV)
  • Imants Zarembo Rezekne Academy of Technologies (LV)

DOI:

https://doi.org/10.17770/het2020.24.6742

Keywords:

CNN, Convolution Neuron Network, Model, Tensorflow

Abstract

In this work, authors experimentally compare latencies of convolution neuron network architectures. Authors measured only recognition time. Four architectures were applied in the experiment: AlexNet, AlexNet Separated, MobileNetV1 and MobileNetV2. Models were trained using Fruits360 dataset. The Android mobile application was developed to measure latency on mobile devices. The smallest latency authors obtained using AlexNet Separable model, but the smallest size was provided by MobileNetV2.

Downloads

Download data is not yet available.

References

Konvolucionāli neironu tīkli vizuālai atpazīšanai [tiešsaiste], [atsauce uz 07.04.2020.]. Pieejams: https://cs231n.github.io/convolutional-networks/

Alexnet arhitektūra [tiešsaiste], [atsauce uz 07.04.2020.]. Pieejams: https://medium.com/@smallfishbigsea/a-walk-through-of-alexnet-6cbd137a5637

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deepconvolutional neural networks. In Advances in neural information processing systems, pp. 1097–1105, 2012

Andrew G., et al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, 2017. [tiešsaiste], [atsauce un 07.04.2020.]. Pieejams: https://arxiv.org/abs/1704.04861

M. Sandler, et al. MobileNetV2: Inverted Residuals and Linear Bottlenecks, 2019. [tiešsaiste], [atsauce un 07.04.2020.]. Pieejams: https://arxiv.org/pdf/1801.04381.pdf

H. Mureșan & O. Mihai. Fruit recognition from images using deep learning. Acta Universitatis Sapientiae, Informatica, vol. 10, pp. 26-42, 2018.

Tensorflow Lite [teiššaiste], [atsauce uz 07.04.2020.]. Pieejams: https://www.tensorflow.org/lite

Samsung S8 mobilā telefona specifikācija [tiešsaiste], [atsauce uz 07.04.2020.]. Pieejams: https://www.sammobile.com/samsung/galaxy-s8/specs/

Android Studio laika mērīšanas funkcija [tiešsaiste], [atsauce un 07.04.2020.]. Pieejams: https://developer.android.com/reference/java/lang/System

Downloads

Published

2020-04-22

Issue

Section

Information Technologies

How to Cite

[1]
I. Apeināns, V. Žukovs, S. Kodors, and I. Zarembo, “EXPERIMENTAL COMPARISON OF CONVOLUTION NEURON NETWORK ARCHITECTURES”, HET, no. 24, pp. 10–13, Apr. 2020, doi: 10.17770/het2020.24.6742.