Investigation of Surface Roughness of Carbon Steel Machined Parts after Nanosecond Fiber Laser Marking

Petar Tsvyatkov
Faculty of Engineering
Technical University of Gabrovo
Gabrovo, Bulgaria
ppeter@mail.bg

Emil Yankov
Faculty of Engineering
Rezekne Academy of Tehnologies
Rezekne, Latvia
emil.yankov@rta.lv

Edmunds Teirumnieks
Faculty of Engineering
Rezekne Academy of Tehnologies
Rezekne, Latvia
edmunds.teirumnieks@rta.lv

Lyubomir Lazov
Faculty of Engineering
Rezekne Academy of Tehnologies
Rezekne, Latvia
lyubomir.lazov@rta.lv

Abstract. Laser marking with a nanosecond fiber laser is one of the most common ways to permanently mark various engineering materials. The roughness of the machined surface and its observation is essential to evaluate the impact on the contrast of the marking as well. Experimental studies of the roughness obtained as a result of the laser marking, were inspected using a 3D measuring laser microscope OLYMPUS LEXT OLS5100. Analysis of the graphical dependence of the roughness function on the four process parameters: laser power, frequency, speed of marking and step.

Keywords: Carbon steel, Laser marking, Roughness, fiber laser, surface texturing.

I. INTRODUCTION

In industrial production, some of the finished components and parts are required to have a certain roughness class. The operational properties of machine parts largely depend on the quality of the surface layer of the parts. Roughness affects other surface properties such as: coefficient of friction and wear, corrosion resistance, hydrophobicity, etc.[1]. There are different techniques for superficial processing, including mechanical and chemical methods [2]. One of their biggest drawbacks is the long processing time. In the 1970s, a new reliable and relatively economical industrial technology for laser processing of materials appeared. This technology is developing extremely fast and has been used in various industrial productions in recent years [3]. One of the directions in laser surface treatment is laser marking. In this process, a laser beam affects the surface, changing its roughness. The surface layer melts or evaporates as a result of this process, changing the roughness. When the roughness increases, we have a surface scoring effect, and when the roughness decreases as a result of laser exposure, we have a polishing effect [4]. In this effective method, through raster processing, the required grade of roughness is achieved. The advantages of the laser method compared to the traditional ones are processing without tools, high flexibility at automation and low operational costs, high speed of processing, environmental friendliness and that it is non-contact.

The roughness of the surface during laser processing depends on several groups of factors, which are related to the parameters of the laser source, the technological process and the properties of the material [5].

Various scientific teams have investigated the changes in the roughness of products as a result of laser processing. D Przestacki, [6] has investigated roughness in turning and laser machining. They achieved it with a laser power of 600 W roughness almost 30 % lower than that obtained by traditional turning. The Angelov, N. [7], used numerical experiments on the effect of laser wavelength
on CuBr laser ($\lambda_1 = 511$ nm), ruby laser ($\lambda_2 = 690$ nm), diode laser ($\lambda_3 = 940$ nm), fiber laser ($\lambda_4 = 1.06$ μm) and CO2-laser ($\lambda_5 = 10.6$ μm). Numerical experiments with different types of lasers are at the same power density and lasing scan rate, and the heating temperature at the lasing wavelengths is determined. Ukar et al. [8] have achieved a change of roughness up to 80% after laser treatment on instrumental steel. Guisario et al.[9] studied the modification on the surface, induced from high powered laser on three different surfaces. Perry et al. [10] researched the laser roughness modification process and worked on developing a model to forecast its change. Bögli et al.[11] present one of the most common tools for evaluating surface roughness.

The purpose of the present study is to evaluate the influence of the average power P, processing speed v, step Δx between raster lines on the roughness of a carbon steel specimen. The analysis of energy density E_{eff} shows the relationship between the increase in roughness and the energy absorbed per square centimeter on the sample.

II. EQUIPMENT, MATERIALS AND METHODOLOGY

The experiments were carried out with a fiber laser technological system “PowerLine F-20 Varia” manufactured by GmbH ROFIN with length on the wave on the laser radiation 1.064 μm.

The main parameters on the laser technological system are shown in Table 1.

<table>
<thead>
<tr>
<th>TABLE 1 PARAMETERS ON THE LASER SYSTEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scanner</td>
</tr>
<tr>
<td>Working area</td>
</tr>
<tr>
<td>Scan speed</td>
</tr>
<tr>
<td>Positioning accuracy</td>
</tr>
<tr>
<td>Focal length</td>
</tr>
<tr>
<td>Laser</td>
</tr>
<tr>
<td>Laser source</td>
</tr>
<tr>
<td>Wavelength</td>
</tr>
<tr>
<td>Maximum power</td>
</tr>
<tr>
<td>Pulse energy</td>
</tr>
<tr>
<td>Operating mode</td>
</tr>
<tr>
<td>Frequency</td>
</tr>
<tr>
<td>Pulse duration</td>
</tr>
</tbody>
</table>

To study the roughness, samples of C75 carbon steel were marked using a raster method. The treated areas are in the shape of a square measuring 10 x 10 mm, and the distance between them is 2 mm. A series of tests were made, each line having the following parameters:

- For the speed v (mm/s)

<table>
<thead>
<tr>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
</tr>
</thead>
</table>

 at constant power $P= 30$ W and step $\Delta x = 30\mu$m

- For the step Δx (μm)

<table>
<thead>
<tr>
<th>20</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
</table>

 at constant speed $v= 300$ mm/s and power $P= 30$ W

Permanent parameters for the process of laser marking for all samples are the frequency $v=40$ kHz, the duration of the impulse $r = 100$ ns, the diameter of the working stain $d = 50\mu$m, the defocus $\Delta f = 0$ mm and the number of repetitions $N = 1$.

The starting material (substrate) has a hardness of from HV 442 HV to 452 HV and a roughness from $R_a = 0.264\mu$m to $R_a = 0.36\mu$m, from $R_z = 13.597\mu$m to $R_z = 21.268\mu$m, from $R_q = 0.41\mu$m to $R_q = 0.56\mu$m. The chemical composition of the substrate is shown in the Table 2 below.

<table>
<thead>
<tr>
<th>TABLE 2 CHEMICAL COMPOSITION C75</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
</tr>
<tr>
<td>0.70</td>
</tr>
</tbody>
</table>

The laser system and schematic diagram of the raster method used in processing the carbon samples are shown in Fig.1.
According to the purpose of the experiment, the present study analyzed the influence of the power \(P \), the speed of processing \(v \) and the step \(\Delta x \) between raster lines on the surface roughness \(R_q \). The following functional dependencies are investigated:

\[
R_q = R_q (P), \quad R_q = R_q (v), \quad R_q = R_q (\Delta x)
\]

The factors that affect the roughness of the mark are shown in Fig. 2.

![Factors affecting roughness and marking.](image)

To determine how the effective incident energy density \(E_{eff} \) affects the surface roughness, it is necessary to determine linear energy density \(LED \) (1) and linear pulse density \(LPD \) (2)

\[
LED = \frac{AP}{v}, \text{ J/cm}
\]

where \(A = 0.7 \) absorption coefficient.

The LED value is numerically equal to the absorbed energy per unit length in the laser marking area.

\[
LPD = \frac{v}{v}, \text{ number of pulses /cm}
\]

The LPD value is numerically equal to the number of pulses per unit length.

The quantity \(E_{eff} \) gives the absorbed energy of the laser radiation per unit area (13) from the laser impact zone.

\[
E_{eff} = LED \times LPD, \text{ J/cm}^2
\]

The measurements on the surface of the samples from carbon steel C75 were performed with a confocal laser scanning (CLS) microscope Olympus model "OLS5100-EAF" (Table 3). Received micro structural images were made with the help of a 20 × lens, magnification 451 ×, as the examined area for each measurement 644 × 644 µm with a precision of measurement of ± 0.03 µm. From the resulting 3D images from the laser system on the microscope are measured roughness \(R_q \) for the whole researched area 644 × 644 µm. For each of the treated areas (information blocks) five roughness measurements were made \(R_q \) with the average value of the measurement taken as the result. From received values are built graphic dependencies on changes in roughness, depending on the power, the speed, the step and the effective incident energy density \(E_{eff} \) with laser treatment.

III. RESULTS

The results from the experiment representing the graphical dependencies of the change of the roughness from the power \(R_q = R_q (P) \) are shown in Fig.3.

![Experimental dependence of roughness variation on mean power.](image)

The following conclusions can be made from the analysis of the graph:

With increasing power in the range \(P \in [6, 19.7] \) W, the processing roughness increases non-linearly;

The increase in roughness is described by the equation

\[
y = 9 \times 10^5 \times x^4 - 0.004 \times x^3 + 0.0478 \times x^2 + 0.0986 \times x - 0.3393.
\]

For powers in the range \(P \in [6, 10] \) W the rate of growth of the roughness as a function of the power \(\Delta R_q / \Delta P \) is 0.28 µm/W

For powers in the range \(P \in [10, 19.7] \) W the speed of increase of roughness as a function of power \(\Delta R_q / \Delta P \) is 0.05 µm/W.

TABLE 3 PARAMETERS OLYMPUS OLS5000

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total magnification</td>
<td>54× – 17,280×</td>
</tr>
<tr>
<td>Field of view</td>
<td>16 µm = 5,120×</td>
</tr>
<tr>
<td>Display resolution</td>
<td>1 nm</td>
</tr>
<tr>
<td>Measurement accuracy</td>
<td>± 1.5%</td>
</tr>
<tr>
<td>Maximum number of measuring points in a single measurement</td>
<td>4096 × 4096 pixels</td>
</tr>
<tr>
<td>Maximum number of measuring points</td>
<td>36 megapixels</td>
</tr>
<tr>
<td>Wavelength of laser light source</td>
<td>405 nm</td>
</tr>
<tr>
<td>Power of laser light source</td>
<td>0.95 mW</td>
</tr>
</tbody>
</table>

Table 3: Basic parameters of a microscope OLS5100 – EAF
For powers in the range $P \in [6, 10]$ W, the speed of change of roughness is 5 times greater than that in the range $P \in [10, 19.7]$ W.

The results from the experiment representing the graphical dependencies of the change of the roughness from the speed $R_q = R_q(v)$ are shown in Fig. 4.

The following conclusions can be made from the analysis of the graph:

When the speed increases in the range $v \in [100, 700]$ mm/s a nonlinear decrease in roughness is observed.

For speeds in the range $v \in [100, 400]$ mm/s the rate of roughness reduction as a function of speed $\Delta R_q / \Delta v$ is 0.014 μm/(mm/s).

For speeds in the range $v \in [500, 700]$ mm/s the rate of roughness reduction as a function of speed $\Delta R_q / \Delta v$ is 0.003 μm/(mm/s), which is 4.8 times less than that in the range $v \in [500, 700]$ mm/s.

The results from the experiment representing the graphical dependencies of the roughness change from the step $R_q = R_q(\Delta x)$ are shown in Fig. 5.

The following conclusions can be made from the analysis of the graph:

When the step increases, a logarithmic increase in roughness is observed.

For step in the range $\Delta x \in [20, 30]$ μm the speed of growth of the roughness as a function of the step $\Delta R_q / \Delta x$ is 0.114.

For step in the range $\Delta x \in [30, 40]$ μm roughness has minimal changes.

For step in the range $\Delta x \in [40, 60]$ μm the speed of growth of the roughness as a function of the step $\Delta R_q / \Delta x$ is 0.001.

The results of the experiment, representing the graphical dependence of the variation of the roughness as a function of the energy density $R_q = R_q(E_{eff})$ are shown in Fig. 6.

The following conclusions can be made from the analysis of the graph:

For energy density in the range $E_{eff} \in [116; 1200]$ J/cm2 an increase in roughness is observed, the dependence being non-linear.

In the interval $E_{eff} \in [116; 262]$ J/cm2 the rate of growth of the roughness as a function of the energy density $\Delta R_q / \Delta E_{eff}$ is 0.0054 μm/J/cm2.

In the interval $E_{eff} \in [226; 1200]$ J/cm2 the rate of growth of the roughness as a function of the energy density $\Delta R_q / \Delta E_{eff}$ is 0.0021 μm/J/cm2, which is 2.5 times less than that in the range $E_{eff} \in [116; 262]$ J/cm2.

In the interval $E_{eff} \in [250,350]$ J/cm2 a rapid increase in roughness is observed, which increases the efficiency in rubbing systems.

From the measurements made, the highest value of the roughness $R_q = 6.763 \mu$m was observed at the speed $v = 100$ mm/s and $R_q = 4.925 \mu$m at the step $\Delta x = 20 \mu$m.
IV. CONCLUSION

The present study analyzes how roughness is modified by laser processing parameters: average power, speed, step and energy density. For the selected range of study, an increase in roughness is observed. The increase in roughness for some treated areas is 10 times greater than that of the substrate. The correct choice of parameters makes it possible to achieve a certain class of roughness, which is necessary in machine building.

Research is planned on the effect of the number of repetitions on the roughness of carbon steel workpieces.

V. ACKNOWLEDGMENT

The authors gratefully acknowledge financial support by the European Regional Development Fund, Postdoctoral research aid Nr. 1.1.1.2/16/I/001 research application "Analysis of the parameters of the process of laser marking of new industrial materials for high-tech applications, Nr. 1.1.1.2/V1AA/3/19/474".

REFERENCES

