The Effect of Steam Explosion Treatment on Technical Hemp Fibres

Silvija Kukle, Jānis Grāvītis, Anna Putniņa, Anete Stikute


As hemp is a renewable resource with the high biomass yield it could be considered as potential abundant local biomass material for a wide range of applications. In this article hemp fibres architecture as a source of high strength cellulose are analysed. In experimental part steam explosion technology is applied to disintegrate technical hemp fibres to elementary fibres with the aim to find out the best way of procedure without usage to environment harmful chemical pre-treatments and looking forward to solve problems on further nano-level environment friendly hemp cellulose disintegration.


auto-hydrolysis; cellulose; elementary fibres; hemp; steam explosion

Full Text:



Lilholt, H., Lawther, J.M., 2000. Natural organic fibres. Elsevier. In: Kelly, A. and Zweben, C. (Ed.), comprehensive composite materials, vol. 1, pp. 303-325.

Bois W.F. Hemp as a raw material for the paper industry. Bedrijfsontwikkeling, 1982,13, 851-856

Robinson R. The great book of hemp. 1996, Park Street Press, Main; Roe P.J., Ansell M.P. Jute-reinforced polyester composites. J Mater Sci, 1985, 20, 4015-4020.

Werf H.M.G., Mathijssen E.W.J.M., Haverkort A.J. The potential of hemp for sustainable fibre production: a crop physiological appraisal. Annals of Applied Biology, 1996, 129, 109-123.

Fan M. Elementary hemp fibres and strength. BioResources 5(4), 2010, 2307-2322.

Garcia-Jaldon, C., Dupeyre, D., Vignon, M.R. Fibres from semi-retted hemp bundles by steam explosion treatment. Biomass Bioenergy, 1998, 14, 251-260.

Candilo M., Ranalli P. and Bozzi C. Preliminary results of tests facing with the controlled retting of hemp. Industrial crops and products, 2003, 11, 197-203.

Bhuvan M. Mohini P. and Sain M. Mechanical properties of thermally treated hemp fibres. J. Material research innovation, 2003, 7(4), 231-238.

Sedelnik N. Properties of hemp fibre cottonised by biological modification of hemp hackling noils. Fibres and textiles in Eastern Europe. January/March 2004, Vol. 12, No.1 (45).

Thygesen A. Properties of hemp fibre polymer composites -An optimisation of fibre properties using novel defibration methods and fibres characterisation, PhD thesis, The Royal Agricultural and Veterinary University of Denmark, ISBN 87-550-3440-3.

Bos H.L. and Donald A.M. In situ ESEM study of the deformation of elementary flax fibres. J. Material Science,1999, 34, 3029-3034.

Lu J., Askeland P., Drzal L.T. Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer, 2008, 49, 1285-1296.

Azizi Samir M.A.S., Alloin F., Dufresne A. Review of recent research into cellulosic whiskers, their properties and their applications in nanocomposite field. Biomacromolecules, 2005, 6, 612-626.

Montari S., Roumani M., Heux L., Vignon M. R. Topochemistry of carbaxylated cellulose nanocrystals resulting from TEMP-mediated oxidation. Maxromolecules, 2005, 38, 1665-1671.

Siqueira G., Bras J. And Dufresne A. Cellulosic bionanocomposites: a review of preparation, properties, applications. Polimers 2010, 2, p. 728-765. ISSN 2073-4360.

Thygesen, A., Madsen, F.T., Lilholt, H, Felby, C., Thomsen, A.B., 2002. Changes in chemical composition, degree of crystallisation and polymerisation of cellulose in hemp fibres caused by pre-treatment. In: Lilholt, H., Madsen, B., Toftegaard, H., Cendre, E., Megnis, M., Mikkelsen, L.P., Sørensen, B.F. (Ed.), Sustainable natural and polymeric composites - science and technology.

Lilholt, H., Lawther, J.M., 2000. Natural organic fibres. Elsevier. In: Kelly, A. and Zweben, C. (Ed.), Comprehensive composite materials, vol. 1, pp. 303-325.

Atalla R.H., VanderHart L.D. Native cellulose: A composite of two distinct crystaline forms. Science, 1984, 223, 283-285.

Sahena I. M., Brown R.M.J. Cellulose biosynthesis: current views and envolwing concepts. Ann. Bot., 2005, 96, 9-21.

Souza Lima M.M., Borsali R.M.J. Rodlike cellulose microcrystals: structure, properties and applications. Macromol. Rapid.Commun, 2004, 25, 771-787.

Dufresne A. Polymer nanocomposites from biological sources. In: Encyclopdia of nanosciences and nanotechnology, 3nd ed, Nalwa H.S.,ed.American Scientific Publisher, Valencia, C.A., USA.

Nishino T. Natural fibre resources. In: Green Composites, ed: C.Baillie, 2004, Woodhead Publishing Ltd., England.

Fan M.Characterization and performance of elementary hemp fibres: factors influencing tensile strength. BioResources 5(4), 2307-2322), 2010.

Gravitis J. Nano level structures in wood cell wall composites. Cellulose Chemistry and Technology, 2006, 40(5), 291-298.

Szalkowski Z.: Podstawy chemicznej technologii surowcov I wlokeien lykowych, Warszawa, 1967.

Bjerre AB, Schmidt AS. Development of chemical and biological processes for production of bioethanol: Optimization of the wet oxidation process and characterization of products. 1997, Riso-R-967(EN), Riso National Laboratory: pp 5-9.

Morvan C, Jauneau A, Flaman A, Millet J, Demarty M. Degradation of flax polysaccharides with purified endo-polygalacturonase. Carbohydrate Polymers, 1990,13, 149-163.

Bjerre AB, Olesen AB, Fernqvist T, Plöger A, Schmidt AS. Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnol Bioeng, 1996, 49, 568-577.

Madsen, B., 2004. Properties of plant fibre yarn polymer composites – An experimental study. Ph.D. thesis, BYG-DTU, Technical University of Denmark, ISBN 87-7877-145-5.

Thygesen A., Geoffrey Daniel, Hans Lilholt, Thomsen A.B. Hemp fiber microstructure and use of fungal defibration to obtain fibers for composite materials. Journal of Natural fibers, 2005, 2(4), 19-37.

Thygesen A., Thomsen A.B., Skammelsen Schmidt A., Jorgensen H., Ahring B.K., Olsson L. Production of cellulose and hemicellulose-degrading enzymes by filamentous fungi cultivated on wet-oxidised wheat straw. Enzyme Microbial Technology, 2003, 32 (5), 606-615.

Madsen F.T., Burgert I., Jungnikl K., Felby C., Thomsen A.B. Effect of enzyme treatment and steam explosion on tensile properties of single hemp fiber. 12th International Symposium on Wood and Pulping Chemistry (ISWPC), 2003, Madison, P80.

Brühlmann F., Leupin M., Erismann K.H., Fiechter A. Enzymatic degumming of ramie bast fibers. Journal of Biotechnology, 2000,76, 43-50.

Thomsen A.B., Rasmussen S., Bohn V., Nielsen K.V., Thygesen A., Hemp raw materials: The effect of cultivar, growth conditions and pretreatment on the chemical composition of the fibres. Riso National Laboratory. Report No.: R-1507.

Mwaikambo LY, Ansell MP. The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement. Die Angewandte Makromolekylare Chemie, 1999, 272, 108-116.

Wang H.M., Postle R., Kessler R.W., Kessler W. Removing pectin and lignin during chemical processing of hemp for textile applications. Textile Research Journal, , 2003, 73, 664-669.

Garcia-Jaldon C., Dupeyre D., Vignon M.R. Fibres from semi-retted hemp bundles by steam explosion treatment. Biomass & Bioenergy, , 1998, 14, 251-260.

Madsen et al., 2003; Vignon M.R., Garcia-Jaldon C., Dupeyre D. Steam explosion of the woody hemp chénevotte. International Journal of Biological Macromolecules, 1995, 17, 395-404.

Zimmer H, Kloss D. Ultraschallaufschluss von Hanf. Ziele-Technologie-Anwendung-Resultate-Qualitätsmanagement. Proceedings of the Bioresource Hemp '95 Symposium; Frankfurt, Germany. Nova-Institute.

Klinke H.B., Ahring B.K., Schmidt A.S., Thomsen A.B. Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresour Technol, 2002, 82. 15-26.

Gravitis J., Dobele G., Abolins J., Tupciauskas R. & Veveris A. Non-sulphur lignin studies under biorefinery concept and evaluation of energy consumption by steam explosion. Presentation, Paris, January, 2011.



  • There are currently no refbacks.

SCImago Journal & Country Rank