Review of Creosote Pollution Toxicity and Possibilities of Bioremediation

A. Jurys, I. Gailiutė, J. Aikaitė-Stanaitienė, S. Grigiškis, A. Maruška, M. Stankevičius, D. Levišauskas


Creosote oil is a complex mixture of hydrocarbon compounds obtained from high temperature distillation of coal tar. It is used for over 100 years as a fungicide, insecticide, miticide, and sporicide to protect wood and is applied by pressure methods to wood products, primary utility poles and railroad ties. This treated wood is intended for exterior or outdoor uses only. Its commercial uses include railroad ties 70%, utility poles 15-20%, and other miscellaneous commercial uses 10-15%. Composition of the creosote depends on the source and it has typically 85% polycyclic aromatic hydrocarbons (PAHs), 10% phenolic compounds, and 5% heterocyclic. Between 20 and 40% of the total weight of typical creosote can be attributed to the 16 PAHs defined as priority pollutants by the United States Environmental Protection Agency (EPA). The production of creosote in the European Union (EU) has been estimated to be approximately 60.000-100.000 t per year. The presence of the toxic PAHs and phenolic compounds make creosote treated wood harmful for the environment at the end of its service life and direct or indirect human exposure to creosote treated wood may cause carcinogenic affect to kidney, liver, bladder, eyes and skin. In this presentation we review creosote environmental pollution toxicity and possibilities of remediation.


Creosote; PAH; Pollution; Remediation; Toxicity

Full Text:



Becker L., Matuschek G., Lenoir D., Kettrup A. Leaching behavior of wood treated with creosote. Chemosphere, 42. 2001, pp. 301- 308.

Moret S., Purcano G., Conte L.S., Polycyclic aromatic hydrocarbon (PAH) content of soil and olives collected in areas contaminated with creosote released from old railway ties. Science of the Total Environment, 386. 2007, pp. 1-8.

Mueller J.G., Chapman P.J., Pritchard P.H. Creosote-contaminated sites. Environ. Sci. Technol., 23(10). 1989, pp. 1197-1201.

Hartnik T., Norli H. R., Eggen T., Breedvelt G.D. Bioassaydirected identification of toxic organic compounds in creosotecontaminated groundwater. Chemosphere, 66. 2007, pp. 435-443.

Mueller J. G., Middaugh D. P., Lantz S. E., Chapman P. J. Biodegradation of creosote and pentachlorophenol in contaminated groundwater: chemical and biological assessment. Applied and Environmental Microbiology, 57(5). 1991, pp. 1277-1285.

Breedveld G. D., Karlsen D.A., Estimating the avaibility of polycyclic aromatic hydrocarbons for bioremediation of creosote contaminated soil. Appl Microbiol Biotechnol, 54. 2000, pp. 255- 261.

Grant R.J., Muckian L.M., Clipson N.J.W., Doyle E.M. Microbial community changes during the bioremediation of creosotecontaminated soil. Letters in applied Microbiology, 44. 2007, pp. 293-300.

Skupinska K., Misiewicz I., Kasprycka-Guttman T.. Polycyclic Aromatic Hydrocarbons: Physiciohemical Properties, Environmental Appearance And Impacton Living Organisms. Acta Poloniae Pharmaceutica – Drug Research, 61(3). 2004, pp. 233- 240.

Kim M.-J., Lee H., Choi Y.-S., Kim G.-H., Huh N.-Y., Lee S., Lim, Y.W., Lee S.-S., Kim J.-J. Diversity of fungi in creosote-treated crosstie wastes and their resistance to polycyclic aromatic hydrocarbons. Antonie van Leeuwenhoek, 97. 2010, pp. 377–387.

Carriere P.P.E, Mesania F.A. Enhanced biodegradation of creosote-contaminated soil. Waste Management, 15(8). 1995, pp. 579-583.

Kulik N., Goi A., Trapido M., Tuhkanen T. Degradation of polycyclic aromatic hydrocarbons by combined chemical preoxidation and bioremediation in creosote contaminated soil. Journal of Environmental Management, 78. 2006, pp. 382-391.

Guerin T. F. Bioremediation of phenols and polycyclic aromatic hydrocarbons in creosote contaminated soil using ex-situ landtreatment. Journal of Hazardous materials, B65. 1999, pp. 305- 315.

Michalowicz J., Duda W. Phenols-Sources and Toxicity. Polish J. of Environ. Stu., 3. 2007, pp. 347-362.

Cerniglia C. E. Biodegradation of polycyclic aromatic hydrocarbons. Current Opinion in Biotechnology, 4. 1993, pp.331- 338.

White A. P., Claxton L.D. Mutagens in contaminated soil: a review. Mutation Research, 567. 2004, pp. 227–345.

Padma T. V., Hale R. C., Roberts M. H., Lipcius R. N. Toxicity of Creosote Water-Soluble Fractions Generated from Contaminated Sediments to the Bay Mysid. Ecotoxicology and Environmental Safety, 42, 1999, pp. 171-176.

U.S. Department of Health and Human Services. Toxilogical profile for wood creosote, coal tar creosote, coal tar, coal tar pitch and coal tar pitch volatiles. 2002.

Coal Tar Creosote. Consise International Chemical Assesment Document 62. World Health Organization Geneva. 2004.

Agency for Toxic Substances and Disease Registry (ATSDR). 2002. Toxicological profile for creosote. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

Mueller J.G., Cerniglia C.E., Pritchard P.H. Bioremediation of environments contaminated by polycyclic aromatic hydrocarbons. In: Crawford RL, Crawford DL (eds) Bioremediation: Principles and Applications, Cambridge University Press, U.K., 1996, pp 1215-1294.

Zhang Z., Zhaowei H., Yang C.; Cuiqing M., Tao F., Xu P. Degradation of n-alkanes and polycyclic aromatic hydrocarbons in petroleum by a newly isolated Pseudomonas aeruginosa DQ8. Bioresourse Technology, 102. 2011, pp. 4111-4116.

Gajewska J., Miszczyk A., Markiewicz Z. Tolerance to creosote oil of bacteria of the genus Pseudomonas isolated from the wood of coniferous trees. Acta microbiologica Polonica Vol. 52, No 4, 2003; 387-394.

Stefan J. Grimberg, William T. Stringfellow,And Michael D. Aitken Quantifying the Biodegradation of Phenanthrene by Pseudomonas stutzeri P16 in the Presence of a Nonionic Surfactant. Applied And Environmental Microbiology Vol. 62, No. 7,1996, pp. 2387–2392

Doong R., Wen-gang Lei Solubilization and mineralization of polycyclic aromatic hydrocarbons by Pseudomonas putida in the presence of surfactant. Journal of Hazardous Materials B96. 2003, pp. 15–27.

Rentz J. A., Alvarez P. J. J., Schnoor J. L. Benzo[a]pyrene degradation by Sphingomonas yanoikuyae JAR02. Environmental Pollution, 151. 2007, pp. 669-677.

Zhao Z., Wong J. W-C. Rapid biodegradation of benzo[a]pyrene by Bacillus subtilis BUM under thermophilic condition. Environmental Engineering Science, 27(11). 2010, pp. 939-945.

Heitkamp M. A., Freeman J. P., Miller D. W., Cerniglia C. E. Pyrene degradation by a Mycobacterium sp.: identification of ring oxidation and ring fission products. Applied and Environmental Microbiology, 54(10). 1988, pp. 2556-2565.

Johnsena A. R., Wickb L. Y., Harmsb H. Principles of microbial PAH-degradation in soil. Environmental Pollution, 133. 2005, pp. 71-84.

Breedveld G., Karlsen D. Estimating. The availability of polycyclic aromatic hydrocarbons for bioremediation of creosotecontaminated soils. Applied Microbiology and Biotechnology, 54(20). 2000, pp. 255-261.

Brooks L., Hughes T., Claxton L., Austern B., Brenner R., Kremer F. Bioassay-directed fractionation and chemical identification of mutagens in bioremediarted soils. Environmental Health perspective, 106(6). 1998, pp. 1435-1440.

Atagana H. I. Bioremediation of creosote-contaminated soil: a pilot-scale land farming evaluation. World J Microbiol Biotechnol, 19. 2003, pp. 571–581.

Illman B. L., Yang V.W., Ferge L.A., “Fungal degradation and bioremediation system for creosote-treated wood”, U. S. Patent 6,387,689 B1, May 14, 2002.

Barclay C.D., Farquhar G.F., Legge R.L. Biodegradation and sorption of polyaromatic hydrocarbons by Phanerochaete chrysosporium. Appl Microbiol Biotechnol. 42(6). 1995, pp.958- 963.

Eggen T., Sveum P.. Decontamination of aged creosote polluted soil: the influence of temperature, white rot fungus Pleurotus ostreatus, and pre-treatment. International Biodeterioraton & Biodegradation, 43. 1999, pp. 125-133.

Byss M., Elhottová D., Tlíska J., Baldrian P. Fungal bioremediation of the creosote-contaminated soil: Influence of Pleurotus ostreatus and Irpex lacteus on polycyclic aromatic hydrocarbons removal and soil microbial community composition in the laboratory-scale study. Chemosphere, 73. 2008, pp. 1518– 1523.

Pozdnyakova N. N., Nikitina V. E., Turovskaya O. V. Bioremediation of Oil-polluted Soil with an Association Including the Fungus Pleurotus ostreatus and Soil Microflora. Applied Biochemistry and Microbiology, 44(1). 2008, pp. 60-65.

Hadibarata T. Oxidative Degradation of Benzo[a]pyrene by the Ligninolytic Fungi. Interdisciplinary Studies on Environmental Chemistry - Environmental Research in Asia, Eds., Obayashi Y., Isobe T., Subramanian A., Suzuki S., Tanabe S., pp. 309–316, 2009.

Chulalaksananukul S.,. Gadd G. M, Sangvanich P., Sihanonth P., Piapukiew J., Vangnai A. S. Biodegradation of benzo(a)pyrene bya newly isolated Fusarium sp. FEMS Microbiol Lett, 262. 2006, pp. 99–106.

Kurt S., Buyukalaca S. Yield performances and changes in enzyme activities of Pleurotus spp. (P. ostreatus and P. sajor-caju) cultivated on different agricultural wastes. Bioresource Technology, 101. 2010, pp. 3164–3169.

Galli E., Brancaleoni E., Di Mario F., Donati E., Frattoni M., Polcaro C.M., Rapanà P. Mycelium growth and degradation of creosote-treated wood by basydiomycetes. Chemosphere, 72. 2008, pp. 1069–1072.

Polcaro CM, Brancaleoni E, Donati E, Frattoni M, Galli E, Migliore L, Rapanà P. Fungal bioremediation of creosote-treated wood: a laboratory scale study on creosote components degradation by Pleurotus ostreatus mycelium. Bulletin of Environmental Contamination and Toxicology, Vol. 81, Issue 2, 2008, pp 180-184.

Davis M. W., Glaser J. A., Evans J. W, Lamar R. T. Field Evaluation of the Lignin-Degrading Fungus Phanerochaete sordida to Treat Creosote-Contaminated Soil. Environ. Sci. Technol., 27(12). 1993, pp.2572-2576.

Ghaly A. E., Zhang B., Dave D. Biodegradation of Phenolic Compounds in Creosote Treated Wood Waste by a Composting Microbial Culture Augmented with the Fungus Thermoascus aurantiacus. American Journal of Biochemistry and Biotechnology, 7(2). 2011, pp. 90-103.

San M., Dengqiang Fu, Ying Teng, Yuanyuan Shen, Yongming Luo, Zhengao Li, Peter Christie. In situ phytoremediation of PAHcontaminated soil by intercropping alfalfa (Medicago sativa L.) with tall fescue (Festuca arundinacea Schreb.) and associated soil microbial activity. J Soils Sediments, 11. 2011, pp. 980–989.

Andersson B.E., Lundstedt S., Tornberg K., Schnurer Y., Oberg L.G., Mattiasson B..Incomplete degradation of polycyclic aromatic hydrocarbons in soil inoculated with wood-rotting fungi and their effect on the indigenous soil bacteria. Environmental Toxicology and Chemistry, 22. (2003), pp. 1238–1243.

Huang X. D, El-Alawi Y., Penrose D. M., Glick B. R., Greenberg B. M. A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut, 130. 2004, pp.465–476.

Chen Y.C., Katherinebanks M, Paulschwab A. Pyrene degradation in the rhizosphere of tall fescue (Festuca arundinacea) and switchgrass (Panicum virgatum L). Environ Sci Technol, 37. 2003, pp. 5778–5782.

Phillips L.A., Greer C.W., Farrell R.E., Germida J.J. Field-scale assessment of weathered hydrocarbon degradation by mixed and single plant treatment. Appl Soil Ecol, 42. 2009, pp. 7–17.

Schnorr J.L., Licht L.A., McCutcheon S.C., Wolfe N.L., Carriera L.H., Phytoremediation of Organic and Nutrient Contaminants, Environ. Sci. Technol., 29. 1995, pp. 318–323.

Binet Ph., Portal J.M., Leyval C. Fate of polycyclic aromatic hydrocarbons (PAH) in the rhizosphere and mycorrhizosphere of ryegrass. Plant and Soil, 227. 2000, pp. 207–213.

Fan S., Li P., Gong Z., Ren W., He N. Promotion of pyrene degradation in rhizosphere of alfalfa (Medicago sativa L.). Chemosphere, 71(8). 2008, pp. 1593–1598.

Wang M.C., Chen Y.T., Chen S.H., ChangChien S.W., SunkaraS.V. Phytoremediation of pyrene contaminated soils amended with compost and planted with ryegrass and alfalfa. Chemosphere, 87. 2012, pp. 217–225.

Hamdi, B., Benzarti S., Aoyama, J., Jedidi N., Rehabilitation of degraded soils containing aged PAHs based on phytoremediation with alfalfa (Medicago sativa L.). International Biodeterior and Biodegradation, 67. 2012, pp. 40-47.

Wu N., Zhang Sh., Huang H., Christie P. Enhanced dissipation of phenanthrene in spiked soil by arbuscular mycorrhizal alfalfa combined with a non-ionic surfactant amendment. Science Of The Total Environment, 394. 2008, pp. 230-236.

Binet Ph., Portal J.M., Leyval C. Dissipation of 3-6-ring polycyclic aromatic hydrocarbons in the rhizosphere of ryegrass. Soil Biology & Biochemistry, 32. 2000, pp. 2011-2017.

Hultgren J., Pizzul L., Castillo M.P., U.Granhall. Degradation of PAH in a Creosote-Contaminated Soil. A Comparison Between the Effects of Willows (Salix Viminalis), Wheat Straw and A Nonionic Surfactant. International Journal of Phytoremediation, 12. 2010, pp. 54–66.

Smith M.J., Flowers T.H., Duncan H.J., Saito H. Study of PAH dissipation and phytoremediation in soils: Comparing freshly spiked with weathered soil from a former coking works. Journal of Hazardous Materials, 192. 2011, pp. 1219–1225.

Diab E. A. Phytoremediation of Polycyclic Aromatic Hydrocarbons (Pahs) in a Polluted Desert Soil, with Special Reference to the Biodegradation of the Carcinogenic Pahs. Australian Journal of Basic and Applied Sciences, 2(3). 2008, pp. 757-762.

Ibáñez S.G., Sosa Alderete L.G., Medina M.I., Agostini E. Phytoremediation of phenol using Vicia sativa L. plants and its antioxidative response. Environ Sci Pollut Res Int., 19(5). 2012, pp. 1555-1562.

Zhu L., Feng Sh. Synergistic solubilization of polycyclic aromatic hydrocarbons by mixed anionic–nonionic surfactants. Chemosphere, 53. 2003, pp. 459–467.



  • There are currently no refbacks.