CHALLENGES OF SSF PROCESS FOR PEA AND WHEAT BRAN VALORIZATION USING TRICHODERMA SPP. FOR BIOCONTROL AGENT PRODUCTION
DOI:
https://doi.org/10.17770/etr2023vol1.7306Keywords:
Biocontrol agent (BCA), Food waste valorisation, Solid state fermentation (SSF), TrichodermaAbstract
Fungal strain Trichoderma spp. is a known bio control agent (BCA), which are difficult to obtain using more prevalent industrial-scale biofermentation methods such as submerged fermentation (SmF) However, difficult up-scalable solid-state fermentation (SSF) are appropriate for such BCA production. An automated semi-rotating drum bioreactor was developed and built to explore SSF scale-up using pea and wheat bran as substrates to valorise food-industry by-products into viable BCA ‘s. Estimation of biomass using CO2/O2 analysis in exhaust gasses revealed that mix of pea and wheat bran can produce a viable BCA ‘s using gentle mixing technique with possibilities of industrial scale-up
Downloads
References
P. K. Sadh, S. Duhan, and J. S. Duhan, “Agro-industrial wastes and their utilization using solid state fermentation: a review,” Bioresour Bioprocess, vol. 5, no. 1, pp. 1–15, 2018, doi: 10.1186/s40643-017-0187-z.
K. Raymaekers, L. Ponet, D. Holtappels, B. Berckmans, and B. P. A. Cammue, “Screening for novel biocontrol agents applicable in plant disease management – A review,” Biological Control, vol. 144, no. February, p. 104240, 2020, doi: 10.1016/j.biocontrol.2020.104240.
M. E. Morán-Diez and T. R. Glare, “What are microbial-based biopesticides?,” Methods in Molecular Biology, vol. 1477, pp. 1–10, 2016, doi: 10.1007/978-1-4939-6367-6_1.
G. Viniegra-González, E. Favela-Torres, C. N. Aguilar, S. de J. Rómero-Gomez, G. Díaz-Godínez, and C. Augur, “Advantages of fungal enzyme production in solid state over liquid fermentation systems,” Biochem Eng J, vol. 13, no. 2–3, pp. 157–167, 2003, doi: 10.1016/S1369-703X(02)00128-6.
E. Catalán and A. Sánchez, “Solid-state fermentation (SSF) versus submerged fermentation (SmF) for the recovery of cellulases from coffee husks: A life cycle assessment (LCA) based comparison,” Energies (Basel), vol. 13, no. 11, 2020, doi: 10.3390/en13112685.
J. P. López-Gómez, M. A. Manan, and C. Webb, “Solid-state fermentation of food industry wastes,” Food Industry Wastes, pp. 135–161, 2020, doi: 10.1016/b978-0-12-817121-9.00007-3.
P. K. Sadh, S. Duhan, and J. S. Duhan, “Agro-industrial wastes and their utilization using solid state fermentation: a review,” Bioresour Bioprocess, vol. 5, no. 1, pp. 1–15, 2018, doi: 10.1186/s40643-017-0187-z.
K. Raymaekers, L. Ponet, D. Holtappels, B. Berckmans, and B. P. A. Cammue, “Screening for novel biocontrol agents applicable in plant disease management – A review,” Biological Control, vol. 144, no. February, p. 104240, 2020, doi: 10.1016/j.biocontrol.2020.104240.
M. E. Morán-Diez and T. R. Glare, “What are microbial-based biopesticides?,” Methods in Molecular Biology, vol. 1477, pp. 1–10, 2016, doi: 10.1007/978-1-4939-6367-6_1.
G. Viniegra-González, E. Favela-Torres, C. N. Aguilar, S. de J. Rómero-Gomez, G. Díaz-Godínez, and C. Augur, “Advantages of fungal enzyme production in solid state over liquid fermentation systems,” Biochem Eng J, vol. 13, no. 2–3, pp. 157–167, 2003, doi: 10.1016/S1369-703X(02)00128-6.
E. Catalán and A. Sánchez, “Solid-state fermentation (SSF) versus submerged fermentation (SmF) for the recovery of cellulases from coffee husks: A life cycle assessment (LCA) based comparison,” Energies (Basel), vol. 13, no. 11, 2020, doi: 10.3390/en13112685.
J. P. López-Gómez, M. A. Manan, and C. Webb, “Solid-state fermentation of food industry wastes,” Food Industry Wastes, pp. 135–161, 2020, doi: 10.1016/b978-0-12-817121-9.00007-3.
N. A. Yazid, R. Barrena, D. Komilis, and A. Sánchez, “Solid-state fermentation as a novel paradigm for organic waste valorization: A review,” Sustainability (Switzerland), vol. 9, no. 2, pp. 1–28, 2017, doi: 10.3390/su9020224.
V. Kumar, V. Ahluwalia, S. Saran, J. Kumar, A. K. Patel, and R. R. Singhania, “Recent developments on solid-state fermentation for production of microbial secondary metabolites: Challenges and solutions,” Bioresour Technol, vol. 323, no. December 2020, p. 124566, 2021, doi: 10.1016/j.biortech.2020.124566.
L. Thomas, C. Larroche, and A. Pandey, “Current developments in solid-state fermentation,” Biochem Eng J, vol. 81, pp. 146–161, 2013, doi: 10.1016/j.bej.2013.10.013.
Manpreet, S., Sawraj, S., Sachin, D., Pankaj, S., and Banerjee, U. C.*, “Influence of Process Parameters on the Production of Metabolites in Solid-State Fermentation,” Malays J Microbiol, vol. 1, no. 2, pp. 1–9, 2005, doi: 10.21161/mjm.120501.
G. A. Muñoz, E. Agosin, M. Cotoras, R. S. Martin, and D. Volpe, “Comparison of aerial and submerged spore properties for Trichoderma harzianum,” FEMS Microbiol Lett, vol. 125, no. 1, pp. 63–69, 1995, doi: 10.1016/0378-1097(94)00474-6.
A. Pandey, “Aspects of fermenter design for solid-state fermentations,” Process Biochemistry, vol. 26, no. 6, pp. 355–361, 1991, doi: 10.1016/0032-9592(91)85026-K.
J. D. Zhang and Q. Yang, “Optimization of solid-state fermentation conditions for Trichoderma harzianum using an orthogonal test,” Genetics and Molecular Research, vol. 14, no. 1, pp. 1771–1781, 2015, doi: 10.4238/2015.March.13.4.
S. Naeimi, V. Khosravi, A. Varga, C. Vágvölgyi, and L. Kredics, “Screening of organic substrates for solid-state fermentation, viability and bioefficacy of trichoderma harzianum as12-2, a biocontrol strain against rice sheath blight disease,” Agronomy, vol. 10, no. 9, 2020, doi: 10.3390/agronomy10091258.
S. Ming et al., “The Solid Fermentation State’s Optimization of Trichoderma Harzianum M1,” IOP Conf Ser Mater Sci Eng, vol. 612, no. 2, 2019, doi: 10.1088/1757-899X/612/2/022111.
[S. A. Nusaibah and M. Habu, “A Review Report on the Mechanism of Trichoderma spp. as Biological Control Agent of the Basal Stem Rot (BSR) Disease of Elaeis guineensis,” Trichoderma - The Most Widely Used Fungicide, 2012.
A. Puyam, “Advent of Trichoderma as a bio-control agent- A review,” Journal of Applied and Natural Science, vol. 8, no. 2, pp. 1100–1109, 2016, doi: 10.31018/jans.v8i2.927.
K. Saravanakumar et al., “Effect of Trichoderma harzianum on maize rhizosphere microbiome and biocontrol of Fusarium Stalk rot,” Sci Rep, vol. 7, no. 1, pp. 1–13, 2017, doi: 10.1038/s41598-017-01680-w.
L. Toscano, G. Montero, L. Cervantes, M. Stoytcheva, V. Gochev, and M. Beltrán, “Production and partial
characterization of extracellular lipase from trichoderma harzianum by solid-state fermentation,” Biotechnology and Biotechnological Equipment, vol. 27, no. 3, pp. 3776–3781, 2013, doi: 10.5504/BBEQ.2012.0140.
S. Kar et al., “Process optimization of xylanase production using cheap solid substrate by Trichoderma reesei SAF3 and study on the alteration of behavioral properties of enzyme obtained from SSF and SmF,” Bioprocess Biosyst Eng, vol. 36, no. 1, pp. 57–68, 2013, doi: 10.1007/s00449-012-0761-x.
C. Webb, “Design Aspects of Solid State Fermentation as Applied to Microbial Bioprocessing,” Journal of Applied Biotechnology & Bioengineering, vol. 4, no. 1, 2017, doi: 10.15406/jabb.2017.04.00094.
U. Bhale, “Incidence of fungi on Sapota in field of Thane district of Maharashtra , IS SN 0971-6920 An International Research Journal of Biological Sciences Scientists Unique Researchers Yare Ass ociation Website : www.floraandfauna.org,” no. April 2015, 2017.
Md. J. Adan, Md. A. Baque, Md. M. Rahman, Md. R. Islam, and A. Jahan, “Formulation of Trichoderma Based Biopesticide for Controlling Damping off Pathogen of Eggplant Seedling,” Univers J Agric Res, vol. 3, no. 3, pp. 106–113, 2015, doi: 10.13189/ujar.2015.030305.
D. A. Mitchell, O. F. Von Meien, L. F. L. Luz, and M. Berovič, “The scale-up challenge for SSF bioreactors,” Solid-State Fermentation Bioreactors: Fundamentals of Design and Operation, pp. 57–64, 2006, doi: 10.1007/3-540-31286-2_5.
B. K. Lonsane et al., “Scale-up strategies for solid state fermentation systems,” Process Biochemistry, vol. 27, no. 5, pp. 259–273, 1992, doi: 10.1016/0032-9592(92)85011-P.
S. Steudler, A. Werner, and J. J. Cheng, Solid state fermentation: Research and Industrial Applications. 2019. doi: 10.1016/S1369-703X(02)00134-1.
C. R. Soccol, E. S. F. da Costa, L. A. J. Letti, S. G. Karp, A. L. Woiciechowski, and L. P. de S. Vandenberghe, “Recent developments and innovations in solid state fermentation,” Biotechnology Research and Innovation, vol. 1, no. 1, pp. 52–71, 2017, doi: 10.1016/j.biori.2017.01.002.
V. Bellon-Maurel, O. Orliac, and P. Christen, “Sensors and measurements in solid state fermentation: A review,” Process Biochemistry, vol. 38, no. 6, pp. 881–896, 2003, doi: 10.1016/S0032-9592(02)00093-6.
F. J. J. I. Nagel, J. Tramper, M. S. N. Bakker, and A. Rinzema, “Temperature control in a continuously mixed bioreactor for solid-state fermentation,” Biotechnol Bioeng, vol. 72, no. 2, pp. 219–230, 2001, doi: 10.1002/1097-0290(20000120)72:2<219::AID-BIT10>3.0.CO;2-T.