Christo Kondoff, Radostina Zaekova, Marina Manilova


The composites based on aluminum alloys obtained by friction stir processing (FSP) combine the advantages of lightweight aluminum composites with the well-refined structure obtained by deformation in plastic state. When reinforcing elements in the form of powders or nanoplates are introduced in the process, of mixing they are evenly distributed in the processes zone, which acquires a fine-grained structure. The study examines specific results in the use of various tools and materials, as well as some basic parameters of the process in terms of surface smoothness, defects and some performance characteristics of the tested samples, such as strength, ductility, hardness and corrosion resistance.




Keywords—aluminum alloys composites, friction stir processing (FSP), fine-grained structure, nanoplates

Full Text:



M. J. Jweed, A. M. Takhakh, N. K. Kareem, “Comparison between Friction stir welding (FSW) and Friction stir processing (FSP) of AA5086 aluminum alloy”, International Journal of Technical Research and Applications, Volume 3, Issue 6 (November-December,2015), pp 205-210.

R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, A.K. Mukherjee, Scripta Mater. 42 (2000) 163

R.S. Mishra, M.W. Mahoney, Mater. Sci. Forum 357–359 (2001) 507

W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, C.J. Dawes, G.B. Patent Application No. 9125978.8 (December 1991).

Z.Y. Ma, R.S. Mishra, M.W. Mahoney, Acta Mater. 50 (2002) 4419

R. Kapoor, N. Kumar, R.S. Mishra, C.S. Huskamp, K.K. Sankaran, “Influence of fraction of high angle boundaries on the mechanical behavior of an ultrafinegrained Al-Mg alloy”. Mater. Sci. Eng., 2010 A 527, 5246–5254,

P. Naresh, A. Kumar “Effect of Nano Reinforcement On Fabrication Of Al/Al2O3 Surface Composite By Friction Stir Processing”, Materials Science forum, Vols. 830-831, pp 467-471

R.S. Mishra, Z.Y. Ma / Materials Science and Engineering R 50 (2005) 1–78

W.M. Thomas, K.I. Johnson, C.S. Wiesner, Adv. Eng. Mater. 5 (2003) 485.

W.M. Thomas, E.D. Nicholas, S.D. Smith, in: S.K. Das, J.G. Kaufman, T.J. Lienert (Eds.), „Aluminum 2001—Proceedings of the TMS 2001 Aluminum Automotive and Joining Sessions,“ TMS, 2001, p. 213.

A. Kumar, K.K. Mugada “Effect of knurling shoulder design with polygonal pins on material flow and mechanical properties during friction stir welding of Al−Mg−Si alloy” Trans. Nonferrous Met. Soc. China 29(2019) 2281−2289

A. M. Hassan, T. Qasim, and A. Ghaithan, “Effect of Pin Profile on Friction Stir Welded Aluminum Matrix Composites”, Materials and Manufacturing Processes, 2012, 27: 1397–1401,

P. A. Namdev, R. P. Srinivasa, O. B. Mamat and A. M. Lubis, Effect of SiC/Fly Ash Reinforcement on Surface Properties of Aluminum 7075 Hybrid Composites, Coatings, June 2020, 10, 541, doi:10.3390.

B. Sahoo, S. D. Girhe, J. Paul, “Influence of process parameters and temperature on the solid state fabrication of multilayered graphene-aluminium surface nanocomposites”. J. Manuf. Process. 2018, 34, 486–494

B. Sahoo, D. Narsimhachary, J. Paul, “Tribological behavior of solid-state processed Al-1100/GNP surface nanocomposites”. J. Mater. Eng. Perform. 2018, 27, 6529–6544. DOI: 10.1007/s11665-018-3727-6.

V. K. Parikh, A. D. Badgujar, N. D. Ghetiya, “Joining of metal matrix composites using friction stir welding: a review”, Mater. Manuf. Process. 2019, 34, 123–146. DOI: 10.1080/10426914.2018.1532094.

T. Prater, “Solid-state joining of metal matrix composites: a survey of challenges and potential solutions.”, Mater. Manuf. Process. 2011, 26, 636–648. DOI: 10.1080/10426914. 2010.492055.

T. K. Pal, “Joining of aluminium metal matrix composites”. Mater. Manuf. Process. 2005, 20, 717–726. DOI: 10.1081/AMP-200055116.

A. Sharma, V. M.Sharma, B. Sahoo, S. K. Pal, J. Paul, “Effect of multiple micro channel reinforcement filling strategy on Al6061-graphene nanocomposite fabricated through friction stir processing”, J. Manuf. Process. 2019, 37, 53–70. DOI: 10.1016/j. jmapro.2018.11.009.

R. Maurya, B. Kumar, S. Ariharan, J. Ramkumar, K. Balani, “Effect of carbonaceous reinforcements on the mechanical and tribological properties of friction stir processed Al6061 alloy”, Mater. Des. 2016, 98, 155–166. DOI: 10.1016/j.matdes.2016.03.021.

J. B. Fernandez, E. J. Macias, J. S. Muro, L. Caputi, D. Miriello, R. De Luca, A. S. Roca, H. C. Fals, “Tribological behavior of AA1050H24-graphene nanocomposite obtained by friction stir processing”, Metals (Basel). 2018, 8, 113. DOI: 10.3390/met8020113.

C. H. Jeon, Y. H. Jeong, J. J. Seo, H. N. Tien, S.T. Hong, Y. J. Yum, S. H. Hur, K. J. Lee, “Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing”, Int. J. Precis. Eng. Manuf. 2014, 15, 1235–1239. DOI: 10.1007/s12541-014-0462-2.

F. Khodabakhshi, M. Nosko, A. P. Gerlich, “Effects of graphene nano-platelets (Gnps) on the microstructural characteristics and textural development of an Al-Mg alloy during friction-stir processing”, Surf. Coatings Technol. 2018, 335, 288–305. DOI: 10.1016/j.surfcoat.2017.12.045.

F. H. Latief, E. S. Sherif, A. A. Almajid, H. Junaedi, “Fabrication of exfoliated graphite nanoplatelets-reinforced aluminum composites and evaluating their mechanical properties and corrosion behavior”, J. Anal. Appl. Pyrolysis. 2011, 92, 485–492. DOI: 10.1016/j.jaap.2011.09.003.

A. Sharma, V. Sharma, A. Gugaliy, P. Rai, S. K. Pal, and J, Paul, Friction stir lap welding of AA6061 aluminium alloy with a graphene interlayer”, Materials and Manufacturing Processes, January 2020,

DOI: 10.1080/10426914.2020.1718694.



  • There are currently no refbacks.

SCImago Journal & Country Rank