BIOGAS PRODUCTION POSSIBILITY FROM AQUACULTURE WASTE

Authors

  • Sergejs Osipovs Department of Applied Chemistry, Daugavpils University (LV)
  • Aleksandrs Pučkins Department of Applied Chemistry, Daugavpils University (LV)
  • Mihails Pupiņš Department of Ecology, Daugavpils University (LV)
  • Jeļena Kirilova Department of Applied Chemistry, Daugavpils University (LV)
  • Juris Soms Department of Environmental Science and Chemistry, Daugavpils University (LV)

DOI:

https://doi.org/10.17770/etr2021vol1.6638

Keywords:

biogas, aquaculture, waste

Abstract

The research explores the possibilities of biogas extraction from aquaculture waste. Samples of fish-farming pool sludge were taken from a fish farm, which is located in the Krāslava district, Kalnieši rural municipality. Prior to experimental fermentation and extraction of biogas, samples were analyzed in order to determine their moisture and organic matter content (OMC). For purpose of increasing OMC available for fermentation, sludge was mixed with crushed reeds. Biogas was obtained from the samples at various ratios of sludge and reed residues. During the experiments, 3.81 liters of biogas were obtained from a mixture of fish-farming pool sludge and crushed reed at reed mass 100 g. The results of experimental research indicate that aquaculture residues can be used to produce biogas.

Supporting Agencies
This research was supported within the Daugavpils University internal research project competition (project “Biogas production possibility from aquaculture waste”, Nr. 14-95/2021/20).

Downloads

Download data is not yet available.

References

S. Achinas, V. Achinas and G. J. W. Euverink, “A Technological Overview of Biogas Production from Biowaste” Engineering, vol. 79, pp. 299-307, June 2017. Available: ScienceDirect, https://www.sciencedirect.com/ [Accessed March 30, 2021], https://doi.org/10.1016/J.ENG.2017.03.002

K. Paritosh, S. K. Kushwaha, M. Yadav, N. Pareek, A. Chawade and V. Vivekanand, “Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling” BioMed Research International, vol. 2017, pp. 1-19, February 2017. Available: Hindawi, https://www.hindawi.com/ [Accessed March 30, 2021], https://doi.org/10.1155/2017/2370927

A. Ahmad, S. R. S. Abdullah, H. A. Hasan, A. R. Othman and N. I. Ismail, “Aquaculture industry: Supply and demand, best practices, effluent and its current issues and treatment technology” Journal of Environmental Management, vol. 287, 112271, June 2021. Available: ScienceDirect, https://www.sciencedirect.com/ [Accessed March 30, 2021], https://doi.org/10.1016/j.jenvman.2021.112271

“Latvijas ilgtspējīgas attīstības stratēģija līdz 2030. gadam”, 2010. [Online]. Available: https://www.pkc.gov.lv/sites/default/files/inline-files/Latvija_2030_6.pdf [Accessed: March 30, 2021].

D. Blumberga, L. Balode, K. Bumbiere, Z. Indzere, E.Kudurs, K. Spalviņš, A. Vēciņa and A. Tamane, “Zivju apstrādes efektivitātes ceļvedis”. Rīga: RTU Izdevniecība, 2021.

“Biogāzes ražošanas attīstības iespējas Cēsu, Daugavpils, Jēkabpils, Madonas, Gulbenes un Valkas rajonos: atskaites ziņojums”, 2008. [Online]. Available: http://petijumi.mk.gov.lv/sites/default/files/file/RAPLM_Biogazes_razosanas_iespejas.doc [Accessed: March 30, 2021].

C. E. Manyi-Loh, S. N. Mamphweli, E. L. Meyer, A. I. Okoh, G. Makaka and M. Simon, “Microbial Anaerobic Digestion (Bio-Digesters) as an Approach to the Decontamination of Animal Wastes in Pollution Control and the Generation of Renewable Energy” International journal of environmental research and public health, vol. 10, pp. 4390-4417, September 2013. Available: MDPI, https://www.mdpi.com/ [Accessed March 30, 2021], https://doi.org/10.3390/ijerph10094390

C. Zhang, H. Su, J. Baeyens and T. Tan, “Reviewing the anaerobic digestion of food waste for biogas production” Renewable and Sustainable Energy Reviews, vol. 38, pp. 383-392, October 2014. Available: ScienceDirect, https://www.sciencedirect.com/ [Accessed March 30, 2021], https://doi.org/10.1016/j.rser.2014.05.038

K. Zhou, S. Chaemchuen and F. Verpoort, “Alternative materials in technologies for Biogas upgrading via CO2 capture” Renewable and Sustainable Energy Reviews, vol. 79, pp. 1414-1441, November 2017. Available: ScienceDirect, https://www.sciencedirect.com/ [Accessed March 30, 2021], https://doi.org/10.1016/j.rser.2017.05.198

K. Hagos, J. Zong, D. Li, C. Liu and X. Lu, “Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives” Renewable and Sustainable Energy Reviews, vol. 76, pp. 1485-1496, September 2017. Available: ScienceDirect, https://www.sciencedirect.com/ [Accessed March 30, 2021], https://doi.org/10.1016/j.rser.2016.11.184

M. Zhou, B. Yan, J. W. C. Wong and Y. Zhang, “Enhanced volatile fatty acids production from anaerobic fermentation of food waste: A mini-review focusing on acidogenic metabolic pathways” Bioresource Technology, vol. 248 (Part A), pp. 68-78, January 2018. Available: ScienceDirect, https://www.sciencedirect.com/ [Accessed March 30, 2021], https://doi.org/10.1016/j.biortech.2017.06.121

M. Westerholm, S. Isaksson, O. K. Lindsjö and A. Schnürer, “Microbial community adaptability to altered temperature conditions determines the potential for process optimisation in biogas production” Applied Energy, vol. 226, pp. 838-848, September 2018. Available: ScienceDirect, https://www.sciencedirect.com/ [Accessed March 30, 2021], https://doi.org/10.1016/j.apenergy.2018.06.045

J. N. Meegoda, B. Li, K. Patel and L. B. Wang, “A Review of the Processes, Parameters, and Optimization of Anaerobic Digestion” International journal of environmental research and public health, vol. 15, 2224, October 2018. Available: MDPI, https://www.mdpi.com/ [Accessed March 30, 2021], https://doi.org/10.3390/ijerph15102224

S. K. Pramanik, F. B. Suja, S.M. Zain and B.K. Pramanik, “The anaerobic digestion process of biogas production from food waste: Prospects and constraints” Bioresource Technology Reports, vol. 8, 100310, December 2019. Available: ScienceDirect, https://www.sciencedirect.com/ [Accessed: March 30, 2021], https://doi.org/10.1016/j.biteb.2019.100310

S. Achinas and G. J. W. Euverink, “Theoretical analysis of biogas potential prediction from agricultural waste” Resource-Efficient Technologies, vol. 2, pp. 143-147, September 2016. Available: ScienceDirect, https://www.sciencedirect.com/ [Accessed: March 30, 2021], https://doi.org/10.1016/j.reffit.2016.08.001

J. Kainthola, A. S. Kalamdhad and V. V. Goud, “A review on enhanced biogas production from anaerobic digestion of lignocellulosic biomass by different enhancement techniques” Process Biochemistry, vol. 84, pp. 81-90, September 2019. Available: ScienceDirect, https://www.sciencedirect.com/ [Accessed: March 30, 2021], https://doi.org/10.1016/j.procbio.2019.05.023

Downloads

Published

2021-06-16

How to Cite

[1]
S. Osipovs, A. Pučkins, M. Pupiņš, J. Kirilova, and J. Soms, “BIOGAS PRODUCTION POSSIBILITY FROM AQUACULTURE WASTE”, ETR, vol. 1, pp. 195–199, Jun. 2021, doi: 10.17770/etr2021vol1.6638.