MINERAL COMPOSITION OF SOME LATGALE LAKE SEDIMENTS

Authors

  • Rasma Tretjakova Faculty of Engineering, Rezekne Academy of Technologies
  • Andris Karpovičs Faculty of Engineering, Rezekne Academy of Technologies

DOI:

https://doi.org/10.17770/etr2019vol1.4146

Keywords:

lacustrine sediments, minerals, clay, XRD, Latgale

Abstract

Our research is focused on sedimentological conditions and postdepositional changes of recent fine grained lake sediments. We used bulk sediment mineralogical composition and grain size distribution as indicators to identify sediment source areas and possible changes during Holocene. We analysed fine grained (clayey) sediments from three Latgale lakes - Zeili, Pauguļi and Plusons, situated in Latgale upland. Lake sediments cover Late Pleistocene glacial deposits – loam and sandy loam. Bulk mineral composition of 6 sediment samples was determined by X-ray diffraction (XRD). Sediments contained typical minerals found in surrounding glacial sediments: rock-forming minerals as quartz, plagioclase, albite, enstatite, dolomite, calcite, and clay minerals - illite, kaolinite. To identify postdepositional changes in lake sediments of Holocene age clay minerals in clay fraction (<2 mkm) should be analysed. Particularly illite, smectite mixed layered minerals - illite/smectite (I/Sm) and chlorite. Additionally, grain size distribution of studied lake sediments was analysed. Accordingly, our studied sediments are clays, silty clays and clayey silts with bimodal particle distribution, except two samples from Zeiļi and Plusons with unimodal distribution.

Downloads

Download data is not yet available.

References

K. Stankevica, L. Kalnina, M. Klavins, A. Cerina, L. Ustupe, E. Kaup, “Reconstruction of the Holocene palaeoenvironmental conditionsaccordingly to the multiproxy sedimentary records from Lake Pilvelis, Latvia,” Quaternary International, vol. 386, pp. 102-115, 2 November 2015. i

I. Ozola, A. Cerina, L. Kalnina, "Reconstruction of palaeovegetation and sedimentation conditions in the area of ancient Lake Burtnieks, northern Latvia," Estonian Journal of Earth Sciences, 59(2), pp. 164-179, June 2010.

M. Nartišs, E. Kalińska-Nartiša, "An aeolian or a glaciolacustrine record? A case study from Mieļupīte, Middle Gauja Lowland, northeast Latvia," Geologos, vol. 23, no. 1, pp. 15–28, 2017. https://doi.org/10.1515/logos-2017-0002.

M. Nartišs, "Ice Meltwater Lakes of Northern Vidzeme and Middle Gauja Lowlands during the Late Weichselian Deglaciation," Summary of Doctoral thesis, University of Latvia, Riga, 2014.

https://doi.org/10.13140/RG.2.2.28342.80964

E. Kalińska-Nartiša, N. Stivrins, I. Grudzinska, "Quartz grains reveal sedimentary palaeoenvironment and past storm events: A case study from eastern Baltic," Estuarine, Coastal and Shelf Science, vol. 200, pp. 359-370, 5 January 2018. https://doi.org/10.1016/j.ecss.2017.11.027

N. Fagel, X. Boës “Clay-mineral record in Lake Baikal sediments: The Holocene and Late Glacial transition,” Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 259, pp. 230–243, 2008. https://doi.org/10.1016/j.palaeo.2007.10.009

F. X.Gingele, T. Leipe, “Clay mineral assemblages in the western Baltic Sea: recent distribution and relation to sedimentary units”, Marine Geology vol. 140, no. 1–2, pp. 97-115, July 1997. https://doi.org/10.1016/S0025-3227(97)00023-6

P. Sümegi, S. Gulyás, G. Persaits, “Holocene paleoclimatic and paleohydrological changes in the Sárrét basin, NW Hungary,” Documenta Praehistorica, vol. 35, pp. 25-31, 2008.

M. Heikkila, H. Seppa, “Holocene climate dynamics in Latvia, eastern Baltic region: a pollen-based summer temperature reconstruction and regional comparison” Boreas, 39 (2010), pp. 705-719, 2010. https://doi.org/10.1111/j.1502-3885.2010.00164.x

E.C. Grimm, J.J. Donovan, K.J. Brown, “A high-resolution record of climate variability and landscape response from Kettle Lake, northern Great Plains, North America,” Quaternary Science Reviews, vol. 30, pp. 2626-2650, 2011. https://doi.org/10.1016/j.quascirev.2011.05.015

R. Adriaens, E. Zeelmaekers, M. Fettweis, E. Vanlierde, J. Vanlede, P. Stassen, J. Elsen, J. Środoń, N. Vandenberghe, “Quantitative clay mineralogy as provenance indicator for recent muds in the southern North Sea”, Marine Geology, vol. 398, pp. 48-58, 2018, https://doi.org/10.1016/j.margeo.2017.12.011.

B. Segvic, A. Benvenuti, A. Moscariello, “Illite-smectite-rich clay parageneses from Quaternary tunnel valley sediments of the Dutch southern North Sea-mineral origin and paleoenvironment implications”, Clays and Clay Minerals, vol. 64, pp. 608-627, 2016.

S. Opitz, A. Ramisch, J. IJmker, F. Lehmkuhl, S. Mischke, G. Stauch, B. Wünnemann, Y. Zhang, B. Diekmann, “Spatio-temporal pattern of detrital clay-mineral supply to a lake system on the north-eastern Tibetan Plateau, and its relationship to late Quaternary paleoenvironmental changes”, Catena, vol. 137, pp. 203-218, 2016, https://doi.org/10.1016/j.catena.2015.09.003.

M. Frouin, F. Ploquin, M. Soressi, W. Rendu, R. Macchiarelli, A. El Albani, A. Meunier, “Clay minerals of late Pleistocene sites (Jonzac and Les Cottés, SW France): Applications of X-ray diffraction analyses to local paleoclimatic and paleoenvironmental reconstructions”, Quaternary International, vol. 302, pp. 184-198, 2013. https://doi.org/10.1016/j.quaint.2012.12.011.

M. Li, S. Sun, X. Fang, C. Wang, Z. Wang, H. Wang, “Clay minerals and isotopes of Pleistocene lacustrine sediments from the western Qaidam Basin, NE Tibetan Plateau”, Applied Clay Science,vol. 162, pp. 382-390, 2018. https://doi.org/10.1016/j.clay.2018.06.033.

H. Chamley, Clay sedimentology. Springer, Berlin, Heidelberg, 623 p., 1989.

Latvian lake data base “Ezeri.lv”. [Online]. Available: https://www.ezeri.lv/database/ [Accessed: Apr. 2, 2019]

D. M. Moore and R. C. Reynolds, Jr., X-Ray Diffraction and the Identification and Analysis of Clay Minerals, Oxford University Press, New York, 1989.

ICDD Phase Identification & Quantitation data base PDF-4/Organics2017 . [Online]. Available: www.icdd.com/index.php/pdf-4 [Accessed: Feb. 3, 2019]

A. Stinkule, Māli Latvijas zemes dzīlēs. [Clay in the bowels of the earth of Latvia] Rīga, RTU izdevniecība, 2014.

R. A. Berner, E. L. Sjoberg, M. A. Velbel, M. D. Krom, "Dissolution of Pyroxenes and Amphiboles During Weathering", Science, vol. 207, no. 4436, pp. 1205-1206, 1980.

J. Xiao, J. Fan, L. Zhou, D. Zhai, R. Wen, X. Qin, “A model for linking grain-size component to lake level status of a modern clastic lake”, Journal of Asian Earth Sciences, vol. 69, pp. 149-158, 2013. https://doi.org/10.1016/j.jseaes.2012.07.003.

Jule Xiao, Jiawei Fan, Dayou Zhai, Ruilin Wen, Xiaoguang Qin, “Testing the model for linking grain-size component to lake level status of modern clastic lakes”, Quaternary International, vol. 355, pp. 34-43, 2015. https://doi.org/10.1016/j.quaint.2014.04.023.

Downloads

Published

2019-06-20

How to Cite

[1]
R. Tretjakova and A. Karpovičs, “MINERAL COMPOSITION OF SOME LATGALE LAKE SEDIMENTS”, ETR, vol. 1, pp. 304–306, Jun. 2019, doi: 10.17770/etr2019vol1.4146.