CHEMICAL AND BIOLOGICAL PROPERTIES OF THE LAKE BLUE CLAY

Authors

  • Rasma Tretjakova Rezekne Academy of Technologies, Faculty of Engineering, Research Center Chemical, Biology and Biotechnology
  • Samanta Marija Misiņa Rezekne Academy of Technologies, Faculty of Engineering, Research Center Chemical, Biology and Biotechnology
  • Jevgenijs Lukašenoks Rezekne Academy of Technologies, Faculty of Engineering, Research Center Chemical, Biology and Biotechnology

DOI:

https://doi.org/10.17770/etr2017vol1.2635

Keywords:

blue clay, chemical properties, biological properties

Abstract

In this paper the chemical and biological properties of the lake blue clay are explored. A blue clay bed layer was found under the sapropel layer in the lake Plusons (area 4.8 km2, Ludza countries, Latvia). It has been determined that the lake Plusons blue clay has a colloid composition, which contains Na, Mg, K, Ca, Fe, Cr, Mn, Co, Ni, Cu, Zn, Cd, Pb, Al, Ag, Ba. In samples Candida albicans, Pseudomona aeruginosa, Staphylococcus aureus and a total number of aerobic mezofile bacterium have been defined. In microbiological analyses the presence of Candida albicans, Pseudomona aeruginosa, Staphilacoccus aureus has not been stated. The number of mesophyll aerobic microorganisms is <1 CFU/0.1 g. Based on feasibility analysis Latgale lake blue clay has a high potential for its use in cosmetics and medicine.

Downloads

Download data is not yet available.

References

Research of modification possibilities and properties of peat, sapropel and clays. Kūdras, sapropeļa, mālu īpašību un modifikācijas iespēju pētījumi. [Online]. Available: http://www.lu.lv/vpp/zemes-dzilu-resursu-izpete-jauni-produkti-un-tehnologijas-zeme/5-apaksprojekts/projekta-rezultati/sapropelis/ [Accessed: 28.02.2017.].

Database contains information about all lakes in Latvia. [Online]. Available: https://www.ezeri.lv/database/2171/ [Accessed: 01.02.2017.].

Vecstaudža J., Stunda-Zujeva A., Irbe Z., Bērziņa-Cimdiņa L. 2012. Composition of Commercial Cosmetic Clay and Suitability of Latvian clay for Cosmetic Puropses. Material Science and Applied Chemistry 26: 42-49.[Komerciālo kosmētisko mālu sastāvs un Latvijas mālu piemērotība lietojumam kosmētikā. RTU zinātniskie raksti: Materiālzinātne un lietišķā ķīmija. 26: 42.-49. lpp.].

Segliņš V., Stinkule A., Stinkulis Ģ. Valuable minerals in Latvia. Derīgie izrakteņi Latvijā. – Rīga: LU Akadēmiskais apgāds, 2013. 53.-86. pp.

Dušenkova I. “Development of preparation technology and investigation of properties of Latvian clays for application in cosmetic products,” dissertation, Riga Technical University, Latvia, 2014. [„Latvijas mālu sagatavošanas tehnoloģijas izstrāde un īpašību pētījumi izmantošanai kosmētiskajos produktos,” Promocijas darbs, Rīgas Tehniskā universitāte, Latvija, 2014.].

Lopez-Galindo A., Viseras C., Cerezo P. 2007. Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Appl. Clay Sc. 36(1-3): 51-63.

Matike D.M.E., Ekosse G.I.E., Ngole M.V. 2011. Physico-chemical properties od clayley soils used traditionally for cosmetics in Eastern Cape, South Africa. Int. J. Phys. Sci. 6(33): 7557-7566.

Ananthapadmanabhan KP., Moore DJ., Subramanyan MM., Meyer F. 2004. Cleansing without compromise: the impact of cleansers on the skin barrier and the technology of mild cleansing. Dermat. Thera. 17: 16-25.

Gfatter R., Hackl P., Braun F. 1997. Effects of soap and detergents on skin surface pH, stratum corneum hydration and fat contents in infants. Dermatology 195: 258-262.

Korting HC., Greiner K., Hubner K., Hamm G. 1991. Changes in skin pH and resident flora by washing with synthetic detergent preparations at pH 5.5 and 8.5. Sci. Cosmet. Chemis. 42: 142-158.

Bubik J.S. 1992. Preparation of sterile talc for treatment of pleural effusion. Am. J. Hosp. Pharm. 49: 562–563.

Ghiaci M., Aghaei H., Soleimanian S., Sedaghat S. 2009. Enzyme immobilization: 1. Modified bentonite as a new and efficient support for immobilization of Candida rugosa lipase. Applied Clay Science 43(3-4): 289-295.

Ray E. Ferrell J. R. 2008. Medicinal clay and spiritual healing. Clays and Clay Minerals 56(6): 751–760.

Lynda B. Williams, Shelley E. Haydel. 2010. Evaluation of the medicinal use of clay minerals as antibacterial agents. Geol Rev. 52 (7/8): 745–770.

Carretero, M.I., Gomes, C.S.F., Tateo, F., 2006. Clays and human health. In: Bergaya, F., Theng, B.K.G., Lagaly, G. (Eds.), Handbook of Clay Science, Developments in Clay Science, vol. 1. Elsevier, Amsterdam, pp. 717–741.

Abdel-Motelib A., Kader Z.A., Ragab Y.A., Mosalamy M. 2011. Suitability of a Miocene bentonite from North Western Desert of Egypt for pharmaceutical use. Appl. Clay Sci. 52(1-20): 140-144.

Carretero M.I. 2002. Clay minerals and their beneficial effects upon human health. Appl. Clay Sci. 21: 155-163.

Bergaya F., Theng B.K.G., Lagaly G. Clays, environment and health// Handbook of Clay Science. – Amsterdam: Elsevier Ltd., 2006. 623-717 p.

Viseras C., Aguzzi C., Cerezo P., Lopez-Galindo A. 2007. Uses of clay minerals in semisolid health care and therapeutic products. Appl. Clay Sci. 36: 37-50.

Carretero M.I., Pozo M. 2009. Clay and non-clay minerals in the pharmaceutical industry. Part I. Excipients and medical applications. Appl. Clay Sci. 46: 73-80.

Hoang-Minh T., Le T.L., Kasbohm J., Gieré R. 2010. UV-protection characteristics of some clays. Appl. Clay Sci. 48: 349-357.

Newman DJ., Cragg GM. Natural products as sources of new drugs over the last 25 years. 2007. Nat Prod. 70: 461–77.

Lynda B. Williams, Shelley E. Haydel, Rossman F. Giese, Jr., Dennis D. Eberl. 2008. Chemical and mineralogical characteristics of french green clays used for healing. Clays and Clay Minerals 56(4): 437–452.

Sarkisyants L.O. Skupnevskii S.V. Chopikashvili L.V. 2015. Examine the possibility of using the blue clay as a means of efferent therapy. Modern problems of science and education 1 (7): 1435-1438.

Carretero M.I., Pozo M. 2010. Clay and non-clay minerals in the pharmaceutical and cosmetic industries. Part II. Active ingredients. Appl. Clay Sci. 47: 171-181.

Ma’or Z, Henis Y, Alon Y, Orlov E, Sorensen KB, Oren A 2006. Antimicrobial properties of Dead Sea black mineral mud. Derma. 45(5): 504-511.

Surech R., Borkar N.S., Sawant V.A., Shende V.S. 2010. Nanoclay drug delivery systems. Pharm. Sci. Nanotechnol. 3 (2): 901.-905.

Parolo M.E., Fernandez L.G., Zajonkovsky, Sánchez M. P., Baschini M. Antibacterial activity of materials synthesized from clay minerals. Science against microbial pathogens: Communicating current research and technological advances. Spain: Formatex Research Center, 2011. 144.-151. p.

Lafi S.A., Al-Dulaimy M.R. 2011. Antibacterial effect of some mineral clays in vitro. Egypt. Acad. J. Biolog. Sci. 3(1): 75-81.

Haydel S., Remenih C., Williams L. 2008. Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens. The Journal of antimicrobial chemotherapy 61 (2): 353–361.

World Health Organization: Bentonite, kaolin and selected clay minerāls. Environmental Health. Criteria 231 [Online]. Available: http://www.inchem.org/documents/ehc/ehc/ehc231.htm [Accessed: 01.02.2017.].

Segliņš, V., Sedmale G., Vircava I. 2011. Latvian mineral resources: summary of properties. Scientific Journal of Riga Technical University Material Science and Applied Chemistry 24: 116-135. [Latvijas minerālās izejvielas: īpašību apkopojums. 2011. RTU zin. rakstu krāj. Materiālzinātne un lietišķā ķīmija, 24. sējums, 116.–135. lpp.].

Moore DM, Reynolds RC. X-ray diffraction and the identification and analysis of clay minerals. New York: Oxford University Press, 1997.

Zadaka D., Mishael Y.G, Polubesova T., Serban C., Nir, S. 2007. Modified silicates and porous glass as adsorbents for removal of organic pollutants from water and comparison with activated carbons. Applied Clay Science 36: 174–181.

Szabó E, Vajda K, Veréb G, Dombi A, Mogyorósi K, Ábrahám I, Májer M. 2011. Removal of organic pollutants in model water and thermal wastewater using clay minerals. Environ Sci Health A Tox Hazard Subst Environ Eng. 46(12):1346-56.

Volzone C. 2007. Retention of pollutant gases: comparison between clay minerals and their modified products. Applied Clay Science 36, 191–196.

Jaynes, W.F., Zartman, R.E., Hudnall, W.H. 2007. Aflatoxin B1 adsorption by clays from water and corn meal. Applied Clay Science 36: 197–205

Bertolino S.R.A., Zimmermann U., Sattler F.J. 2007. Mineralogy and

geochemistry of bottom sediments from water reservoirs in the vicinity of Córdoba, Argentina: environmental and health constraints. Applied Clay Science 36: 206–220.

Tateo F., Summa V., Bonelli C.G., Bentivenga, G. 2001. Mineralogy and geochemistry of herbalist's clays for internal use: simulation of the digestive process. Appl. Clay Sci. 20: 97–109. In Lopez-Galindo A., Viseras C., Cerezo P. 2007. Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Appl. Clay Sc. 36(1-3): 51-63.

Mascolo N., Summa V., Tateo F. 2004. In vivo experimental data on the mobility of hazardous chemical elements from clays. Appl.Clay Sci. 25: 23–28. In Lopez-Galindo A., Viseras C., Cerezo P. (2007). Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Appl. Clay Sc. 36(1-3): 51-63.

Lopez-Galindo A., Viseras C., Cerezo P. 2007. Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Appl. Clay Sc. 36(1-3): 51-63.

Ahmet R. M., Angel F. 2001.tBaseline studies of the clay minerals society source clays: chemical analyses of major elements. Clays and Clay Minerals, 49(5): 381-386.

Downloads

Published

2017-06-15

How to Cite

[1]
R. Tretjakova, S. M. Misiņa, and J. Lukašenoks, “CHEMICAL AND BIOLOGICAL PROPERTIES OF THE LAKE BLUE CLAY”, ETR, vol. 1, pp. 296–300, Jun. 2017, doi: 10.17770/etr2017vol1.2635.