APPLICATION OF CLUSTERING METHOD IN THE RBF NEURAL NETWORKS

Pēteris Grabusts

Abstract


This paper describes one of classification algorithms, cluster analysis, that plays a significant role in the implementation of learning algorithm as applied to RBF-type artificial mural networks. The mathematical description of the K-means clustering algorithm is given and its implementation is demonstrated by experiment.

Keywords


RBF neural network; clustering; K-means

Full Text:

PDF

References


Hush D.R., Horne B.G. Progress in Supervised Neural Networks. What’s new since Lippmann?, IEEE Signal Processing Magazine, January, 1993, vol.l0,No 1.

Статистические методы для ЭВМ. - Москва: Наука, 1986.

Панкова Л.А., Трахтенгерц Э.А. Субъективность в интелектуальном анализе данных. - Москва: Препринт/Институт проблем управления, 1999.




DOI: https://doi.org/10.17770/etr2001vol1.1928

Refbacks

  • There are currently no refbacks.


SCImago Journal & Country Rank