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Abstract - This paper describes a way of parallel 
algorithm technology usage for analyzing physical processes 
parabolic differential problems on the surface. This analysis 
determine the temperature distribution on the surface. Such 
analysis can fit calculation of Maxwell and Maxwell-Stokes 
equations and can be focused on mathematical models that 
can be reduced to the absorption or diffusion-convection-
reaction equations with the initial and boundary conditions 
of different order (1st, 2nd, 3rd order of boundary 
conditions). Parallel computing technologies usage provides 
an acceleration possibilities of mentioned calculations in 
different way and effect depending of parallel technology 
type and method combinations used during the calculations. 
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I. INTRODUCTION 
In the modern technology the large computing power is 

available. 

The current CPU (central processor unit) processor 
frequency reaches up to 4 GHz. GPU (graphical processor 
unit) and graphics processor cards have reached up to 1,000 
units in a single map, and each processor frequency reaches 
up to 1GHz. 

This means that it is possible to create a computer 
system that could be designed for solving non-stationary 
physical phenomena modelling problem of the three-
dimensional space. 

II. PARALLEL COMPUTING TECHNOLOGIES 
The essence of parallel computing is to split the 

calculation procedure into several calculation nodes. Based 
on which technology will be used, a computer program 

must be created that will use the most optimal aspects of its 
technology to realize the best possible after use time and 
resources. There is the fact that parallelization of 
calculations takes place within a single processor (multi-
core processor), then it must be ensured that each core OS-
based process will use the same RAM memory area to read 
matrix elements. 

A. Shared Memory 
Shared Memory [3] is a memory that shared between 

processor core processes as a "shared access memory," 
which includes both hard disk space (non-removable) and 
RAM memory. A block diagram of this kind of memory 
type can be represented as follows (Fig. 1.): 

 
Fig. 1. Shared Memory Systems. 

Since processor / processor kernels of one or more 
processor / processor cores typically use equivalent 
processors / processor cores, it may be considered that in 
the algorithm's parallelization process it would be 
appropriate for each processor / processor core to execute 
approximately the same number of operations by executing 
identical code snippets. Based on modern CPU architecture 
(fast execution and time delays for switching between 
processes), it is objectively necessary to split the parallel-
generated code into large parallel code fragments to reduce 
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inefficient CPU usage for processor / processor kernel 
switching between OS processes. 

B. Distributed Memory 
The Distributed Memory [3] means that the "relative 

total" memory, which is distributed over computers on the 
network and is connected to one indivisible computing 
system. This system can represent computers-curators and 
computer-based data processing computers. Such 
computers can be both stationary and portable, both virtual 
and processor tiles. An intermediate communication tool is 
text messaging. Each computer has its own processor, 
RAM memory and hard disk (not always). Each computer 
receives signals from the host computer. These signals are 
code fragments of the computer program or their execution 
parameters. Moreover, it is possible to set up a dataset for 
sending and receiving data between computers. The logical 
structure of this kind of memory allocation technology can 
be represented as follows (Fig. 2.): 

 
Fig. 2. Distributed Memory. 

The method of parallelization of this algorithm would 
be useful only for the parallelism of the significant 
fragments of non-interlinked code. Otherwise, sending / 
receiving data between nodes can undermine the utility of 
the technology. Therefore, it is advisable to include in the 
calculation process the computers that are connected with 
the Internet connection within one router in order to take 
computer data interchange in relatively short time. 

C. Shared Memory and Distributed Memory symbiosis 
This type of memory combines the two-way division of 

executable instructions. In practice, here is a combination 
of two pre-reviewed technologies [3]. The logical structure 
of such memory allocation as follows (Fig. 3.): 

 
Fig. 3. Shared Memory and Distributed Memory symbiosis. 

In using this method, the recommendations of the 
previous sections should be taken into account when 
performing the parallelization of the algorithm. 

III. PARALLEL CALCULATIONS 
Mathematical modeling is based on the application of 

numerical methods. The paper was written by overlooking 
the finite difference method. The essence of this method is 
the unbroken division of a space into a number of nodal 
points, where the central point of each node is the node 
average value representation. As more points in the node 
network, as the node is less sized, so the depth of the 
calculation or efficiency is increased. The final difference 
method means that before the calculation process is started, 
at least the first approximation values must be known in the 
entire discrete area as consideration (boundary conditions 
must be known as well). One of the most popular point 
stencils is the 5-point stencil that combines calculable 
nodes as follows (Fig. 4): 

 
Fig. 4. 5 point stencil. 

which means that the value of each point is equivalent to 
the sum of the values of 4 surrounding points (up, bottom, 
right and left) 

An example is the absorption or Helmholtz 2D 
equations (Eq. 1):  

𝐺𝐺𝑥𝑥𝐷𝐷𝑥𝑥
𝜕𝜕2

𝜕𝜕𝑥𝑥2
𝜑𝜑(𝑥𝑥,𝑦𝑦) + 𝐺𝐺𝑦𝑦𝐷𝐷𝑦𝑦

𝜕𝜕2

𝜕𝜕𝑦𝑦2
𝜑𝜑(𝑥𝑥,𝑦𝑦) 

±𝜎𝜎𝜎𝜎(𝑥𝑥,𝑦𝑦) = 0                         (1) 

The difference equation matrix method allows to build 
a solving equation for each unknown point of the grid. 
These equations contain the current for the certain equation 
surrounding point coefficients in a way shown in Eq 2: 

𝑘𝑘𝑖𝑖𝑖𝑖−1𝑢𝑢𝑖𝑖𝑖𝑖−1 + 𝑘𝑘𝑖𝑖−1𝑗𝑗𝑢𝑢𝑖𝑖−1𝑗𝑗 + 𝑘𝑘𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖 + 𝑘𝑘𝑖𝑖𝑖𝑖+1𝑢𝑢𝑖𝑖𝑖𝑖+1 +
𝑘𝑘𝑖𝑖+1𝑗𝑗𝑢𝑢𝑖𝑖+1𝑗𝑗 = 0                         (2) 

It is possible to find out that for each point of the node, 
using the i and j indexes, there exist the coefficients of the 
existing point and four surrounding each Pij points 
(multipliers) (Eq 3): 

𝑘𝑘𝑖𝑖𝑖𝑖−1 = 𝐺𝐺𝑦𝑦𝐷𝐷𝑦𝑦
ℎ𝑦𝑦2

; 𝑘𝑘𝑖𝑖−1𝑗𝑗 = 𝐺𝐺𝑥𝑥𝐷𝐷𝑥𝑥
ℎ𝑥𝑥2

;                          

𝑘𝑘𝑖𝑖𝑖𝑖1 = −�2 𝐺𝐺𝑥𝑥𝐷𝐷𝑥𝑥
ℎ𝑥𝑥2

+ 𝐺𝐺𝑦𝑦𝐷𝐷𝑦𝑦
ℎ𝑦𝑦2

∓ 𝜎𝜎� ;                         (3) 
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𝑘𝑘𝑖𝑖𝑖𝑖+1 = 𝐺𝐺𝑦𝑦𝐷𝐷𝑦𝑦
ℎ𝑦𝑦2

; 𝑘𝑘𝑖𝑖+1𝑗𝑗 = 𝐺𝐺𝑥𝑥𝐷𝐷𝑥𝑥
ℎ𝑥𝑥2

;                 

Using the above, it is possible to draw up a matrix 
equation (a system of absolute sets of i and j index 
equations for each node) that looks as follows (Fig. 5.): 

 
Fig. 5. Linear equation system for difference equation solving process 
using matrix method. 

In order to make calculation time enhancement the 
modified time step was created by using absolute and 
relative errors of calculated temperature for l+1 time 
moment in order to speed up calculations by managing 
simulation time step based on absolute and relative errors 
of the calculations. 

For the “x” unknown set classical calculation method 
the Ax=B matrix equation has be to used and then  “A-

1Ax=A-1B => x=A-1B”. Matrix inversion calculation 
process is very "expensive" in terms of necessary HPC 
cluster needs in order to significantly reduce the time spent 
on parallel computing. If the matrix has Dim points in one 
direction so Dim4 operations should be performed to find 
out the matrix inversion. 

The disadvantages of this method are mainly related to 
computerized rounding and long calculation time and 
required computer resources. Special "expensive" by the 
necessary computing time and computer resources, it is a 
matrix inversion operation (A-1) (matrix inversion 
method). An example is a 2D matrix, which has 10000 
elements in the each direction. This means that this matrix 
has 108 elements. Each element has a data type. If each 
element occupies 8 bytes, then the matrix takes a minimum 
computer memory 8x108B = 8x105KB = 8x102MB = 
800MB, which is required to store the matrix. "Good" 
matrix inversion algorithm requires the number of 
operations, which is equal to the number of matrix 
elements squared. In 10000x10000 matrix case, it would 
be 1016, or 1010 million operations. Considering that today's 
non-threading CPU can calculate 109 operations per 
second, the total calculation time is 107 seconds = 2778 
hours = 115 days. Parabolic differential equation problems 
need at least 10000 time step calculation. This means that 
the total time consumed one problem needs 115x10000 
days equal to 3151 years. 

Looking at the [2] reference, the solution uses a locked-
circuit calculation based on the ADI method. It means that 
the time step is divided into 2 stages, in which the 
calculations take one of the directions as an open scheme 
and 2 directions as an enclosed scheme, where at the top 

the index "l" means the time slice index (Fig. 6.). In order 
to elaborate the parallel calculation method, the difference 
scheme was decomposed by space and time by applying 
ADI [1] method assumes calculation half steps using two 
calculation directions with initial and border conditions: 

 
Fig. 6. ADI calculation split in directions. 
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Each partstep equation contains 3 unknowns in only 
one direction for a 5 point stencil (examples: 5 point stencil 
for 2D space and 7 point stencil for 3D space) and all other 
direction unknowns’ values are taken from the previous 
partstep. Since there are only 3 unknowns and they are 
located in one direction it is possible to construct a 3 
diagonal matrix. It means that there are totally separated 3 
diagonal matrix calculations for each directions’ index 
values that do not have unknowns series within current 
partstep. For example, if direction X is the direction for 
current partstep, that means that it is possible to solve a 3 
diagonal matrix with unknowns in direction X for each Y 
index separately. 

The calculations of the ADI method include non-
interconnected calculations, which can be separated 
between several unit nodes. This means that ADI 
calculations make it possible to use a modern processor 
with 100% power per computer, using a common memory 
area. This can significantly reduce the time of one-step 
calculations. For ADI method implementation in 3D space, 
there have to be 3 equations instead of just 2. 

IV. ENHANCEMENTS 
In order to make calculation time enhancement the 

modified time step was created by using absolute and 
relative errors of calculated temperature for l+1 time 
moment in order to speed up calculations by managing 
simulation time step based on absolute and relative errors 
of the calculations. 

Absolute and relative error calculations for X direction 
(same for Y and Z) as follows in the beginning of each next 
iteration starting from second one in order to: 
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For[x=1,x<=DimX,x++, 
ErrorAbsoluteX[[x]]=0.00; 
ErrorRelativeX[[x]]=0.00; 
For[y=1,y<=DimY,y++, 
For[z=1,z<=DimZ,z++, 
ErrorAbsoluteX[[x]]=ErrorAbsoluteX[[x]]+(Prognos
eX[[x]][[y]][[z]]-
CurrentStepResult[[x]][[y]][[z]])^2; 
ErrorRelativeX[[x]]=ErrorRelativeX[[x]]+CurrentS
tepResult[[x]][[y]][[z]]^2; 
]; 
]; 
ErrorRelativeX[[x]]=ErrorAbsoluteX[[x]]/ErrorRel
ativeX[[x]]; 
ErrorX[[x]]=ErrorRelativeX[[x]]; 
]; 

Finding the maximal error for X direction (same for Y 
and Z) is implemented as follows: 

ErrorAbsoluteXYZ=0; 
ErrorRelativeXYZ=0; 
ErrorXYZ=0; 
For[x=1,x<=DimX,x++, 
If[ 
ErrorAbsoluteXYZ<MatricaErrorAbsoluteX[[x]], 
ErrorAbsoluteXYZ=MatricaErrorAbsoluteX[[x]]; 
]; 
If[ 
ErrorRelativeXYZ<MatricaErrorRelativeX[[x]], 
ErrorRelativeXYZ=MatricaErrorRelativeX[[x]]; 
]; 
If[ 
ErrorXYZ<MatricaErrorX[[x]], 
ErrorXYZ=MatricaErrorX[[x]]; 
]; 
]; 

 

It is possible to calculate next iteration time step length 
based on previously found out ErrorXYZ value. As 
follows: 

If[ 
(ErrorXYZ³toltol/2),t1=t;t=t/tkoef;If[t<tmin,t=t
min];]; 
If[ 
(ErrorXYZ£toltol/2)ß(ErrorXYZ³toltol/5),t1=t;t=t
]; 
If[ 
(ErrorXYZ£toltol/5),t1=t;t=t*tkoef;If[t>tmax,t=t
max];]; 
 

, where ErrorXYZ = maximal error between predicted and 
calculated results, toltol = error threshold, tau1 = temporary 
variable, tau = time step, taukoef = coefficient of time step 
changing, taumin = minimal time step, taumax = maximal 
time step. 

When the next iteration time step is found out it is 
possible to calculate prediction for the next iteration 
calculation results as follows: 

For[x=1,x<=DimX,x++, 
For[y=1,y<=DimY,y++, 
For[z=1,z<=DimZ,z++, 
PrognoseY[[x]][[y]][[z]]=CurrentStepResult[[x]][
[y]][[z]]+t/t1*(CurrentStepResult[[x]][[y]][[z]]
-PrevY[[x]][[y]][[z]]); 
PrognoseX[[x]][[y]][[z]]=CurrentStepResult[[x]][
[y]][[z]]+t/t1*(CurrentStepResult[[x]][[y]][[z]]
-PrevX[[x]][[y]][[z]]); 
PrognoseZ[[x]][[y]][[z]]=CurrentStepResult[[x]][
[y]][[z]]+t/t1*(CurrentStepResult[[x]][[y]][[z]]
-PrevZ[[x]][[y]][[z]]); 
PrevY[[x]][[y]][[z]]=CurrentStepResult[[x]][[y]]
[[z]]; 
PrevX[[x]][[y]][[z]]=CurrentStepResult[[x]][[y]]
[[z]]; 
PrevZ[[x]][[y]][[z]]=CurrentStepResult[[x]][[y]]
[[z]]; 
]; 
]; 
]; 

V. APROBATION 
The author aprobated the described approach and 

received same results applying different methods of 
calculations for 3rd order boundary conditions shows in 
figure 7: 

 
Fig. 7. 3D calculated temperature disctibution using 3rd order 

boundary conditions. 
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